《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電子元件 > 業(yè)界動態(tài) > AI芯片產(chǎn)業(yè)仍在初期,國產(chǎn)問鼎全球并非遙遙無期

AI芯片產(chǎn)業(yè)仍在初期,國產(chǎn)問鼎全球并非遙遙無期

2020-03-08
來源:億歐網(wǎng)
關(guān)鍵詞: 人工智能 芯片 GPU 自動駕駛

AI芯片的發(fā)展,離不開人工智能技術(shù)的成熟。人工智能從1956年誕生至今,共經(jīng)歷過三次大的浪潮。進入21世紀(jì),由于計算機性能的提升和海量數(shù)據(jù)的產(chǎn)生,以及機器學(xué)習(xí)和CNN技術(shù)(Convolutional Nerual Networks,卷積神經(jīng)網(wǎng)絡(luò))獲得突破,算法、算力和數(shù)據(jù)都滿足了人工智能的商業(yè)化落地需求,人工智能迎來了高速發(fā)展的階段。

實際上,人工智能產(chǎn)業(yè)得以快速發(fā)展,離不開目前唯一的物理基礎(chǔ)——芯片。可以說,“無芯片不AI”,能否開發(fā)出具有超高運算能力、符合市場需求的芯片,已成為人工智能能否可持續(xù)發(fā)展的重要因素。

近年來,AI芯片產(chǎn)業(yè)發(fā)展迅猛,眾多企業(yè)紛紛布局。但從芯片的起步、發(fā)展、成熟的三個階段來看,人工智能芯片仍然處于起步階段。

巨頭新銳,共遇產(chǎn)業(yè)瓶頸

按應(yīng)用場景的不同,AI芯片設(shè)計可分為云端訓(xùn)練、云端推斷、終端推斷三部分。其中云端訓(xùn)練芯片主要以英偉達的GPU為主,新入競爭者是谷歌的TPU,以及深耕FPGA的賽靈思與英特爾。在云端推斷方面,代表企業(yè)有AMD、谷歌、英偉達、百度、寒武紀(jì)等。

在終端推斷方面,由于移動終端、自動駕駛等應(yīng)用場景需求逐漸爆發(fā),布局企業(yè)包括傳統(tǒng)芯片巨頭和初創(chuàng)企業(yè),如高通、華為海思、地平線、寒武紀(jì)、比特大陸等。

不難發(fā)現(xiàn),在市場格局上,雖然目前都是傳統(tǒng)芯片巨頭占據(jù)著AI芯片市場的霸主地位。但AI芯片落地難,是困擾巨頭與新銳的共同問題。 

 

6e0a2152e64ba45a4c46193a2b917677.png

來源:清華大學(xué)未來芯片創(chuàng)新中心

地平線聯(lián)合創(chuàng)始人兼副總裁黃暢告訴億歐科創(chuàng):AI芯片落地之所以難,首先是大家技術(shù)上都遇到了共同的瓶頸,也是所謂的“馮·諾依曼瓶頸”。

提高AI芯片性能的關(guān)鍵之一,在于支持高效的數(shù)據(jù)訪問。在傳統(tǒng)馮·諾伊曼體系結(jié)構(gòu)中,數(shù)據(jù)從處理單元外的存儲器提取,處理完之后再寫回存儲器。AI芯片本身基于馮·諾伊曼體系結(jié)構(gòu),使用簡單的功能是完全沒問題的。

但由于運算部件和存儲部件存在速度差異,當(dāng)運算能力達到一定程度,由于訪問存儲器的速度無法跟上運算部件消耗數(shù)據(jù)的速度,再增加運算部件也無法得到充分利用,即形成所謂的馮·諾依曼瓶頸,或“內(nèi)存墻”問題,這是長期困擾計算機體系結(jié)構(gòu)的難題。

目前常見的方法是利用高速緩存(Cache)等層次化存儲技術(shù),盡量緩解運算和存儲的速度差異。然而,AI芯片中需要存儲和處理的數(shù)據(jù)量遠遠大于之前常見的應(yīng)用。這都使得馮·諾依曼瓶頸問題在AI應(yīng)用中愈發(fā)嚴(yán)重?!翱梢圆豢鋸埖卣f,大部分針對AI提出的硬件架構(gòu)創(chuàng)新都是在和這個問題做斗爭?!秉S暢補充道。

不過,也正是由于人工智能芯片的技術(shù)難題,導(dǎo)致不論是巨頭還是新銳都處于同一起跑線,這給國產(chǎn)企業(yè)提供了良好的超越“賽道”。這也避免了傳統(tǒng)巨頭利用自身已有優(yōu)勢,快速甩開對手。

問鼎全球,如何彎道超車

19年6月20日,寒武紀(jì)推出第二代云端“思元270”;6月21日,華為發(fā)布人工智能手機芯片“麒麟810”;7月3日,百度發(fā)布人工智能芯片遠場語音交互芯片“鴻鵠”;10月29日,地平線發(fā)布AIoT邊緣計算人工智能芯片“旭日二代”。

可以發(fā)現(xiàn),國產(chǎn)企業(yè)在AI芯片領(lǐng)域的布局已初見雛形,有一戰(zhàn)之力。但想問鼎全球,仍需改善一些不足。

針對國產(chǎn)AI芯片的發(fā)展,中國工程院院士倪光南多次表示,芯片設(shè)計門檻極高,只有極少數(shù)企業(yè)能夠承受中高端芯片研發(fā)成本,這也制約了芯片領(lǐng)域創(chuàng)新。我國可以借鑒開源軟件成功經(jīng)驗,降低創(chuàng)新門檻,提高企業(yè)自主能力,發(fā)展國產(chǎn)開源芯片。

“開源軟件正成為當(dāng)前軟件產(chǎn)業(yè)的主流,芯片產(chǎn)業(yè)也可以采用開源這種模式?!蹦吖饽蠌娬{(diào),目前在芯片開發(fā)方面,新的RISC-V指令集是一種能夠降低處理器芯片IP成本的新模式。企業(yè)可以自由免費使用RISC-V進行CPU設(shè)計、開發(fā)并添加自有指令集進行拓展等。RISC-V對于當(dāng)前AI芯片架構(gòu)的優(yōu)化,成本的控制,都有很好的效果。

關(guān)于AI芯片架構(gòu),其實我國企業(yè)已有不少可圈可點的案例,例如華為的達芬奇架構(gòu),寒武紀(jì)的Cambricon-X架構(gòu),鯤云科技的CAISA架構(gòu),地平線的伯努利架構(gòu)等。

比起人工智能芯片架構(gòu),我國更應(yīng)該關(guān)注人工智能芯片的產(chǎn)業(yè)鏈完整度。

我國制造芯片的最新設(shè)備和工藝比國際先進水平落后多代,因此一些人工智能芯片需要送到境外進行制造和封裝。這就會造成芯片產(chǎn)量不足,以及價格過高的問題。使得下游很多使用其模組的產(chǎn)品無法量產(chǎn),造成惡性循環(huán),不利于行業(yè)的發(fā)展。

作為國內(nèi)邊緣側(cè)AI芯片領(lǐng)域的先行者,嘉楠科技早在2016年就掌握了16nm制程工藝,之所以現(xiàn)階段的AI芯片制程工藝仍為28nm,主要也是受價格和出貨量的限制。

賽迪顧問《中國人工智能芯片產(chǎn)業(yè)發(fā)展白皮書》顯示,中國人工智能芯片市場規(guī)模保持高速增長。云端領(lǐng)域,2018年云端市場全球占比17.0%;預(yù)計2021年將達221.5億元,CAGR達 51.23%。終端領(lǐng)域,2021年將達84.1億元,CAGR為59.3%。

面對如此廣闊的市場,希望國產(chǎn)企業(yè)能潛心突破瓶頸,問鼎全球。

作者:張偉超


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。