《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 可編程邏輯 > 設(shè)計(jì)應(yīng)用 > 基于FPGA高精度磁通門(mén)傳感器的設(shè)計(jì)與校準(zhǔn)研究
基于FPGA高精度磁通門(mén)傳感器的設(shè)計(jì)與校準(zhǔn)研究
電子技術(shù)應(yīng)用
陳啟慧1,謝志遠(yuǎn)1,2,劉繼志2
1.華北電力大學(xué) 電子與通信工程學(xué)院;2.河北省互感器技術(shù)創(chuàng)新中心
摘要: 針對(duì)寬量程電流測(cè)量中傳統(tǒng)磁通門(mén)傳感器非線性誤差顯著的問(wèn)題,提出基于現(xiàn)場(chǎng)可編程門(mén)陣列(FPGA)高精度時(shí)間差檢測(cè)與多項(xiàng)式動(dòng)態(tài)補(bǔ)償?shù)膮f(xié)同校正方法。通過(guò)建立磁芯正負(fù)飽和時(shí)間差與被測(cè)電流的映射關(guān)系,構(gòu)建數(shù)字化FPGA處理架構(gòu)實(shí)時(shí)捕獲飽和時(shí)間差,并建立包含非線性效應(yīng)的多項(xiàng)式補(bǔ)償模型。實(shí)驗(yàn)結(jié)果表明:該傳感器能夠精確檢測(cè)復(fù)雜微弱漏電流;補(bǔ)償模型決定系數(shù)達(dá)0.999 976,較線性模型提高0.11%;均方根誤差降低85.4%。通過(guò)硬件-算法協(xié)同優(yōu)化有效抑制工業(yè)現(xiàn)場(chǎng)環(huán)境下的精度漂移,為智能電網(wǎng)設(shè)備級(jí)電流監(jiān)測(cè)提供了高精度低成本解決方案。
中圖分類(lèi)號(hào):TP212.6 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.256811
中文引用格式: 陳啟慧,謝志遠(yuǎn),劉繼志. 基于FPGA高精度磁通門(mén)傳感器的設(shè)計(jì)與校準(zhǔn)研究[J]. 電子技術(shù)應(yīng)用,2025,51(12):56-61.
英文引用格式: Chen Qihui,Xie Zhiyuan,Liu Jizhi. Research on the design and calibration of high-precision fluxgate sensor based on FPGA[J]. Application of Electronic Technique,2025,51(12):56-61.
Research on the design and calibration of high-precision fluxgate sensor based on FPGA
Chen Qihui1,Xie Zhiyuan1,2,Liu Jizhi2
1.School of Electronic and Communication Engineering, North China Electric Power University;2.Hebei Transformer Technology Innovation Center
Abstract: Aiming at the problem of significant nonlinear error of traditional fluxgate sensor in wide range current measurement, a collaborative correction method based on field programmable gate array (FPGA) high-precision time difference detection and polynomial dynamic compensation is proposed. In this study, by establishing the mapping relationship between the positive and negative saturation time difference of the magnetic core and the measured current, a digital FPGA processing architecture is constructed to capture the saturation time difference in real time, and a polynomial compensation model including nonlinear effects is established. The experimental results show that this sensor can precisely detect complex and weak leakage currents. The determination coefficient R2 of the compensation model is 0.999 976, which is 0.11 percentage points higher than that of the linear model. The root mean square error is reduced by 85.4 %. Through hardware-algorithm collaborative optimization, the accuracy drift in industrial field environment is effectively suppressed, which provides a high-precision and low-cost solution for device-level current monitoring of smart grid.
Key words : FPGA;fluxgate sensor;time difference method;nonlinear compensation

引言

磁通門(mén)傳感器作為高精度磁場(chǎng)測(cè)量技術(shù)的核心器件,在工業(yè)電流監(jiān)測(cè)領(lǐng)域展現(xiàn)出獨(dú)特優(yōu)勢(shì)。其基于電磁感應(yīng)原理和軟磁材料的非線性磁化特性,可實(shí)現(xiàn)nT級(jí)磁場(chǎng)分辨率,已廣泛應(yīng)用于新能源汽車(chē)電控系統(tǒng)和智能電網(wǎng)漏電監(jiān)測(cè)等關(guān)鍵領(lǐng)域。然而,傳統(tǒng)模擬處理架構(gòu)面臨信號(hào)鏈非線性誤差的固有問(wèn)題,磁芯繞線不均勻性和激勵(lì)電壓波動(dòng)導(dǎo)致的磁滯非線性[1-3]。

研究顯示,新型霍爾傳感器依靠精密的電路設(shè)計(jì)可以把誤差控制在±0.5%以?xún)?nèi),而磁通門(mén)技術(shù)比如FDC500系列,在1 000 A沖擊后仍然可保持小于0.6 A的測(cè)量誤差[1,4]。但基于傳統(tǒng)線性模型的磁通門(mén)傳感器在寬量程0~200 mA的應(yīng)用當(dāng)中呈現(xiàn)出顯著的非線性失真,它的殘差分布呈現(xiàn)典型的拋物線特征,在磁芯飽和區(qū)誤差會(huì)呈指數(shù)增長(zhǎng)[5]。

當(dāng)前的研究主要是從硬件架構(gòu)優(yōu)化與算法補(bǔ)償這兩個(gè)方向去突破上述的瓶頸,在硬件層面,高嵩等人基于dsPIC單片機(jī)依靠相敏檢波構(gòu)建三軸數(shù)字化架構(gòu)[6],但需要多級(jí)濾波電路和AD轉(zhuǎn)換器且對(duì)周?chē)艌?chǎng)環(huán)境要求嚴(yán)格;在算法層面,基于時(shí)間差的傳統(tǒng)線性模型在面對(duì)復(fù)雜磁滯特性的時(shí)候仍然存在0.4%的殘余誤差[7]。而神經(jīng)網(wǎng)絡(luò)如BP網(wǎng)絡(luò)在非線性校正中表現(xiàn)出很強(qiáng)的擬合能力[8],可是它的計(jì)算復(fù)雜度高,需要反向傳播迭代而且缺乏物理可解釋性,無(wú)法滿足工業(yè)場(chǎng)景的實(shí)時(shí)性要求。

本文提出了FPGA-MATLAB算法協(xié)同校正架構(gòu),依靠硬件時(shí)間量化與軟件動(dòng)態(tài)補(bǔ)償?shù)纳疃热诤蟻?lái)解決傳統(tǒng)技術(shù)的局限。設(shè)計(jì)全數(shù)字化FPGA處理鏈,集成低抖動(dòng)時(shí)鐘生成和時(shí)間差量化模塊,且不需要設(shè)計(jì)專(zhuān)門(mén)的低通濾波器電路與AD模塊,與此同時(shí),構(gòu)建了多項(xiàng)式系數(shù)動(dòng)態(tài)更新模型,非線性擬合實(shí)時(shí)修正飽和時(shí)間差與一次電流的映射關(guān)系,有效抑制了傳統(tǒng)磁通門(mén)的固有誤差。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://ihrv.cn/resource/share/2000006877


作者信息:

陳啟慧1,謝志遠(yuǎn)1,2,劉繼志2

(1.華北電力大學(xué) 電子與通信工程學(xué)院,河北 保定 071003;

2.河北省互感器技術(shù)創(chuàng)新中心,河北 保定 071003)


subscribe.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。