《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 一種基于DFT的次優(yōu)高精度頻率估計(jì)算法與實(shí)現(xiàn)
一種基于DFT的次優(yōu)高精度頻率估計(jì)算法與實(shí)現(xiàn)
來(lái)源:電子技術(shù)應(yīng)用2012年第6期
王 樂(lè)1,2, 王竹剛2, 熊蔚明2
1. 中國(guó)科學(xué)院研究生院,北京 100190; 2. 中國(guó)科學(xué)院空間科學(xué)與應(yīng)用研究中心,北京 100190
摘要: 在快速傅里葉變換(FFT)粗估計(jì)的基礎(chǔ)上,通過(guò)曲線(xiàn)擬合,得到一種實(shí)現(xiàn)簡(jiǎn)單的次優(yōu)高精度頻率估計(jì)算法?,F(xiàn)有的精確估計(jì)算法多采用FFT輸出的幅度信息,或是FFT的復(fù)數(shù)輸出進(jìn)行精確估計(jì)。本文提出了利用幅度平方信息做精確估計(jì)的算法,有效地簡(jiǎn)化了運(yùn)算復(fù)雜度,實(shí)現(xiàn)結(jié)構(gòu)簡(jiǎn)單。通過(guò)仿真驗(yàn)證了本算法在低信噪比下也具有較高的估計(jì)精度。
中圖分類(lèi)號(hào): TN91
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2012)06-0122-04
A suboptimal accurate frequency estimator and implementation
Wang Le1,2, Wang Zhugang2, Xiong Weiming2
1. Graduate University of Chinese Academy of Sciences,Beijing 100190, China; 2. Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China
Abstract: This paper presents a suboptimal accurate frequency estimator via fitting the refined result. Previous accurate frequency estimators use the magnitude or complex outputs from FFT(Fast Fourier Transform). However, the suboptimal estimator is based on the magnitude-square outputs, which can simplify the hardware implementation. The simulation results indicate that the suboptimal frequency estimator has a good performance at low signal-to-noise ratio.
Key words : maximum likelihood estimation; DFT; accurate frequency estimation; curve fitting

    對(duì)淹沒(méi)在噪聲中的正弦波信號(hào)進(jìn)行頻率估計(jì)是信號(hào)處理的經(jīng)典課題,在通信、雷達(dá)、電子偵察及振動(dòng)信號(hào)處理等領(lǐng)域有重要的應(yīng)用。在加性高斯白噪聲信道中,頻率估計(jì)算法大致可分為最大似然估計(jì)算法、最大后驗(yàn)概率(MAP)估計(jì)算法和自相關(guān)估計(jì)算法。RIFE D和 BOORSTYN R通過(guò)分析Cramer-Rao下界,提出了工程可實(shí)現(xiàn)的ML算法[1],利用快速傅里葉變換(FFT)進(jìn)行粗搜索再進(jìn)行精確搜索。為了充分利用頻率分布的先驗(yàn)知識(shí),Hua Fu和KAM P Y提出了MAP充分估計(jì)算法[2]。以上兩種算法都具有較高的復(fù)雜度,而自相關(guān)估計(jì)算法實(shí)現(xiàn)復(fù)雜度低,參考文獻(xiàn)[3]給出了自相關(guān)估計(jì)算法的具體細(xì)節(jié)。現(xiàn)有的精確估計(jì)算法實(shí)現(xiàn)的結(jié)構(gòu)多采用FFT粗搜索,再進(jìn)行精確估計(jì)。本文在分析了現(xiàn)有的幾種精確估計(jì)后,結(jié)合實(shí)際硬件設(shè)計(jì),提出了直接利用幅度平方信息做精確估計(jì)的算法,有效地簡(jiǎn)化了現(xiàn)有算法的運(yùn)算量。通過(guò)仿真驗(yàn)證了其在低信噪比下也具有一定的估計(jì)精度。

1 頻率精確估計(jì)的幾種算法
    Voglewede方法[4]利用FFT輸出的峰值以及相鄰的兩個(gè)頻點(diǎn)的幅值,擬合出一條二次曲線(xiàn)逼近原插值函數(shù),通過(guò)求二次函數(shù)即拋物線(xiàn)的最大值求解精確頻率。在有噪聲的情況下,估計(jì)精度不高。Quinn方法[5]利用FFT輸出的次大頻點(diǎn)和最大頻點(diǎn)復(fù)數(shù)值之比插值得出精確頻率值。Jacobsen方法[6]利用三個(gè)頻點(diǎn)復(fù)輸出的實(shí)部實(shí)現(xiàn)頻偏估計(jì)。參考文獻(xiàn)[7]通過(guò)對(duì)FFT的輸出表達(dá)式做泰勒級(jí)數(shù)展開(kāi),給出了Jacobsen方法的理論依據(jù),并對(duì)原方法進(jìn)行了誤差校正。改進(jìn)后的Jacobsen方法修正了原方法的系數(shù)。Jacobsen對(duì)原方法也進(jìn)行了進(jìn)一步的研究,通過(guò)仿真分析了不同窗函數(shù)下的Jacobsen方法的性能,歸納了各種窗函數(shù)下對(duì)估計(jì)算法的系數(shù)修正。
2 算法的構(gòu)造
    利用FFT粗估計(jì)時(shí),為最大程度地簡(jiǎn)化設(shè)計(jì),通過(guò)搜索FFT幅度平方的最大值確定峰值頻點(diǎn)。Voglewede方法利用幅度的二次曲線(xiàn)擬合,引入開(kāi)方運(yùn)算,該方法在低信噪比下的表現(xiàn)不佳。Jacobsen方法和Quinn方法需要FFT輸出復(fù)數(shù)的實(shí)部,從而在確定最大頻點(diǎn)和其相鄰頻點(diǎn)的位置前需要存儲(chǔ)所有FFT復(fù)數(shù)的輸出。眾所周知,復(fù)數(shù)的加法和減法運(yùn)算量是實(shí)數(shù)的兩倍,乘法和除法更甚。Jacobsen方法和Quinn方法都含有復(fù)數(shù)的數(shù)學(xué)運(yùn)算,增加了硬件的復(fù)雜性。為了簡(jiǎn)化硬件,本文考慮設(shè)計(jì)一種精確估計(jì)結(jié)構(gòu)直接利用幅度平方估計(jì)頻偏小數(shù)部分的算法。

 



3.1 不加窗函數(shù)的估計(jì)性能
    仿真設(shè)計(jì)的FFT截?cái)嚅L(zhǎng)度N為1 024,信噪比的范圍是-12 dB~14 dB,步進(jìn)為2 dB。對(duì)?啄從0~0.5選取4個(gè)點(diǎn)作為測(cè)試頻偏,分別是0.1、0.2、0.3和0.4。仿真結(jié)果如圖1所示。
    由仿真結(jié)果可知,高信噪比下,本文的兩種方法均優(yōu)于Voglewede方法。低信噪比下,次優(yōu)精確估計(jì)算法優(yōu)于Voglewede方法。
3.2 增加窗函數(shù)時(shí)的估計(jì)性能
    本組仿真采用Hanning、Hamming和Blackman三種窗函數(shù)和不加窗的次優(yōu)算法進(jìn)行比較,仿真結(jié)果如圖2所示。

    由仿真結(jié)果可以看出,Hamming窗和Hanning窗估計(jì)精度均不高。而B(niǎo)lackman窗可達(dá)到最佳的性能,在低信噪比下,有效地降低了次優(yōu)算法的均方誤差,在高信噪比下,保持次優(yōu)算法良好的估計(jì)精度。其估計(jì)性能接近CRB。
3.3 實(shí)現(xiàn)資源占用對(duì)比
    正如在第2節(jié)中的討論,最大頻點(diǎn)的選擇需要對(duì)FFT實(shí)部和虛部進(jìn)行平方相加的運(yùn)算。如果精確估計(jì)算法利用幅度信息(如Voglewede方法),則在確定最大值后需要開(kāi)方得到幅度信息。如果精確估計(jì)算法利用FFT的實(shí)部信息(如Jacobsen方法),則在確定最大值前需對(duì)各頻點(diǎn)的實(shí)部存儲(chǔ)。表1給出了Jacobsen方法、Voglewede方法和本文兩種方法的資源占用情況。本文提出的次優(yōu)算法直接利用FFT幅度的平方信息,也簡(jiǎn)化了算法的實(shí)現(xiàn)。

    本文提出的次優(yōu)估計(jì)算法,是一種基于FFT輸出幅度平方的信息通過(guò)曲線(xiàn)擬合估計(jì)精確頻偏的算法。從算法原理和仿真驗(yàn)證兩方面說(shuō)明了本算法的可行性。原理上,算法根據(jù)FFT幅度平方輸出的函數(shù),推導(dǎo)出最優(yōu)的估計(jì)表達(dá)式,算法簡(jiǎn)化后得到一種僅需要兩個(gè)頻點(diǎn)的估計(jì)算法,并優(yōu)化算法系數(shù)。通過(guò)仿真說(shuō)明了算法在不同信噪比下的估計(jì)精度,加入Blackman窗后有效改善算法抗噪性能,使其在高信噪比和低信噪比下都有較高的精度。算法設(shè)計(jì)上,由于采用FFT輸出幅度的平方,兩個(gè)頻點(diǎn)輸出值參與運(yùn)算,硬件實(shí)現(xiàn)簡(jiǎn)單,可在各類(lèi)適合的頻率估計(jì)領(lǐng)域應(yīng)用。
參考文獻(xiàn)
[1] RIFE D, BOORSTYN R. Single-tone parameter estimation from discrete-time observations[J]. IEEE Transactions on  Information Theory, 1974,20(5):591-598.
[2] FU H, KAM P Y. MPA/ML estimation of the frequency and phase of a single sinusoid in noise[J]. IEEE Transactions on Signal Processing, 2007,55(3):834-845.
[3] VOLKER B, HANDEL P. Frequency estimation from proper sets of correlations[J]. IEEE Transactions on Signal Processing, 2002,50(4):791-802.
[4] VOGLEWEDE P. Parabola approximation for peak determination[J]. Global DSP Magazine, 2004,3(5):13-17.
[5] QUINN B G. Frequency estimation using tapered data[C]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006:73-76.
[6] JACOBSEN E. On local interpolation of DFT outputs[EB/OL].[2011-03] http://www.ericjacobsen.org/FTinterp.pdf,(Fall,1994).
[7] CANDAN C. A method for fine resolution frequency estimation from three DFT samples[J]. IEEE Signal Processing Letters, 2011,18(6):351-354.
[8] 袁亞湘,孫文瑜. 最優(yōu)化理論與方法[M]. 北京:科學(xué)出版社,1997.
[9] BELEGA D, DALLET D. Multipoint interpolated DFT method for frequency estimation[C]. Systems, Signals and Devices, 2009.SSD’09,6th international Multi-conference on, Djerba, Tunisia. 2009:1-6.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。