基于擠壓激勵(lì)網(wǎng)絡(luò)的惡意代碼家族檢測方法
所屬分類:技術(shù)論文
上傳者:zhoubin333
文檔大?。?span>902 K
標(biāo)簽: 惡意代碼 機(jī)器學(xué)習(xí) 卷積神經(jīng)網(wǎng)絡(luò)
所需積分:0分積分不夠怎么辦?
文檔介紹:惡意代碼已經(jīng)成為威脅網(wǎng)絡(luò)安全的重要因素。基于機(jī)器學(xué)習(xí)的惡意代碼檢測方法已經(jīng)取得較好的效果,但面對相似的惡意代碼家族,往往效果不佳。對此,提出了一種基于擠壓激勵(lì)網(wǎng)絡(luò)的檢測算法,由卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)與擠壓和激勵(lì)(Squeeze-and-Excitation,SE)模塊構(gòu)成。CNN先快速提取惡意代碼的圖像特征,SE模塊對多通道特征圖進(jìn)行全局平均池化,將全局信息壓縮,然后通過全連接層自適應(yīng)學(xué)習(xí),并將每個(gè)通道特征圖賦予不同的權(quán)重來表示不同的重要程度,指導(dǎo)激勵(lì)或抑制特征信息。實(shí)驗(yàn)結(jié)果表明,該方法相對于傳統(tǒng)機(jī)器學(xué)習(xí)方法有更好的檢測效果,與深度學(xué)習(xí)算法相比檢測效果也有一定的提升且參數(shù)量大大減少。
現(xiàn)在下載
VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。