基于特征级注意力的方面级情感分类模型研究
所屬分類:技术论文
上傳者:aetmagazine
文檔大?。?span>538 K
標(biāo)簽: 情感分析 方面级 特征级
所需積分:0分積分不夠怎么辦?
文檔介紹:近年来大数据、自然语言处理等技术得到了飞速发展。情感分析作为自然语言处理细分领域的前沿技术之一,得到了极大的重视。然而,低参数量、高精度依然是制约情感分析的关键因素之一。为实现模型参数少、模型分类精度高的情感分析需求,通过改进特征级注意力机制的输入向量,以及前馈神经网络与注意力编码的前后位置关系,得到可复位特征级注意力机制,并基于该机制提出了基于可复位特征级注意力方面级情感分类模型(RFWA)和基于可复位特征级自注意力方面级情感分类模型(RFWSA),实现了高精度的方面级情感分析效果。在公开数据集上的实验结果表明,相比现有的主流情感分析方法,所提出的模型有明显的优势,尤其是在取得相当分类效果的情况下,模型的参数量仅为最新AOA网络的1/4。
現(xiàn)在下載
VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。