1引言
正交頻分復(fù)用是一種多載波調(diào)制技術(shù),具有很高的頻譜利用率,能夠有效減小無線信道的時(shí)間彌散所帶來的ISI。廣泛應(yīng)用于現(xiàn)在流行的高速無線通信技術(shù)中,如WIMAX和WIFI。OFDM技術(shù)有2個(gè)關(guān)鍵問題:對(duì)頻率偏差敏感,峰均功率比值較大。這是因?yàn)镺FDM信號(hào)在時(shí)域上表現(xiàn)為N個(gè)正交子載波信號(hào)的疊加,理論上峰值功率可以達(dá)到均值功率的N倍。盡管峰值功率出現(xiàn)的幾率很低,但為了不失真地傳輸這些信號(hào),對(duì)發(fā)射端的線性度要求很高,并且過大的功率會(huì)造成很大浪費(fèi),系統(tǒng)的性能也會(huì)急劇惡化,他直接影響整個(gè)系統(tǒng)的運(yùn)行成本和效率。因此必須尋找降低峰值平均功率比的方法。
目前已經(jīng)提出很多方法來解決PAPR的問題,包括限幅類技術(shù)、編碼類技術(shù)、概率類技術(shù)。其中概率類技術(shù)中部分傳輸序列(PTS)算法是一種解決高PAPR問題的有效方法,他通過對(duì)符號(hào)作線性劃分和線性變換,可以顯著減少信號(hào)峰值出現(xiàn)的概率。
2峰均功率比的定義
OFDM系統(tǒng)中的峰均功率比是指OFDM信號(hào)的最大峰值功率和其平均功率之比,即:
式(1)中xn表示經(jīng)過反傅里葉變換后得到的一個(gè)OFDM符號(hào);E[]代表數(shù)學(xué)期望。N點(diǎn)M進(jìn)制的輸入序列[x0,…,xn-1],將星座映射后的數(shù)據(jù)序列分別調(diào)制在N個(gè)子載波上,在一個(gè)OFDM符號(hào)周期內(nèi),基帶OFDM符號(hào)可以等效表示為:
對(duì)連續(xù)時(shí)域信號(hào)s(t)以T/N的速率進(jìn)行抽樣,即令t=kT/N(k=0,1,…,N-1),可以得到離散的時(shí)域信號(hào)s(k):
從式(5)上可以看出,降低PAPR技術(shù)的核心就是降低R(u),也即是降低傳輸信號(hào)序列的相關(guān)性。當(dāng)輸入數(shù)據(jù)序列的一致性較大時(shí),OFDM峰均功率就比較高。假定當(dāng)輸入二進(jìn)制數(shù)據(jù)序列為全1序列,那么經(jīng)過星座映射和IFFT調(diào)制后,信號(hào)會(huì)產(chǎn)生很大的瞬間峰值功率,從而導(dǎo)致PAPR達(dá)到理論上的最大值N。
3部分傳輸序列(PTS)方法原理
PTS方法的基本原理如圖1所示,其中,輸入的數(shù)據(jù)符號(hào)被分為若干組,然后再合并這些分組,通過選擇適當(dāng)?shù)姆指罘椒ê瓦m當(dāng)?shù)馗淖兿辔灰赃x擇最優(yōu)的序列,從而實(shí)現(xiàn)提高系統(tǒng)性能和降低系統(tǒng)的復(fù)雜度。
4一種基于相位調(diào)整的PTS搜索算法
PTS算法的關(guān)鍵是計(jì)算最優(yōu)的旋轉(zhuǎn)向量b=6[bn(1),…,bn(v)],通常采用窮盡搜索的方法。需要做Wv-1次循環(huán)比較。特別是當(dāng)V較大時(shí),計(jì)算的復(fù)雜度將呈指數(shù)上升。對(duì)于比較大的子載波數(shù)目(V>8),計(jì)算的負(fù)擔(dān)使得全局搜索難以實(shí)現(xiàn)。已經(jīng)有一些方法減少系數(shù)搜索的復(fù)雜度。一些文獻(xiàn)提出一種迭代方法,減少了搜索次數(shù)得到相位因子的一個(gè)次最優(yōu)集合,就是將輸人的數(shù)據(jù)塊分成V束,IFFT變換之后得到V個(gè)N點(diǎn)的部分序列。首先假定所有部分序列的因子都相同b(v)=1,并計(jì)算合成信號(hào)的峰均比然后改變第一個(gè)因子b(1)的符號(hào),重新計(jì)算新合成信號(hào)的峰均比。如果新的峰均比比上一步的低,則保留b(1)作為最終因子序列的部分,否則將b(1)變回前面的值。以相同的方式繼續(xù)這個(gè)過程,直到所有V個(gè)因子都經(jīng)歷了符號(hào)翻轉(zhuǎn)的嘗試。和全局搜索比較,迭代方法有一點(diǎn)性能損失。也有一些文獻(xiàn)提出了一些新的算法,把相位固定的幾個(gè)特殊值上,比如說1,j,這樣可將搜索降低到。然而當(dāng)v很大時(shí),這種算法的計(jì)算量還是很大。下面介紹一種基于相位調(diào)整的簡單算法?;镜乃枷胧怯孟辔坏脑隽繉ふ襊APR的最小值,相位可用以下公式表示:
可以很明顯地看出,當(dāng)k較大時(shí),搜索的精度比較高,然而計(jì)算量也會(huì)同時(shí)增大。經(jīng)過k次循環(huán)后,對(duì)應(yīng)的較小的PAPR值才能得到。還可以設(shè)一個(gè)門限值來減少計(jì)算復(fù)雜度,當(dāng)小于門限值時(shí),相位調(diào)整中止,否則一直到循環(huán)結(jié)束。為了驗(yàn)證OFDM系統(tǒng)基于相位調(diào)整算法降低PAPR的有效性,考慮3種情況下的CCDF特性。在仿真中,采用128個(gè)子載波、QPSK調(diào)制的OFDM系統(tǒng),PTS算法中用的V=4個(gè)子頻域向量。算法使用的過采樣倍數(shù)L=4。圖2分別給出在不同相位優(yōu)化算法下的PAPR改善性能。顯而易見,基于相位調(diào)整的PTS搜索算法比窮盡搜索相當(dāng)大程度上減小計(jì)算復(fù)雜度,而其性能卻與窮盡搜索差不多。
5結(jié)語
通過對(duì)基于相位優(yōu)化的PTS算法研究,指出以前相位優(yōu)化算法中存在大量計(jì)算,提出一種基于相位增量的相位優(yōu)化快速算法。分析和仿真結(jié)果表明,新算法不但能夠較大程度地減小運(yùn)算復(fù)雜度,而且獲得了較好的峰均比,而且特別適用于過采樣處理,有利于工程實(shí)現(xiàn)。