基于區(qū)塊鏈的醫(yī)療影像數(shù)據(jù)人工智能檢測模型
網(wǎng)絡安全與數(shù)據(jù)治理 4期
陳思源1,2,譚艾迪3,魏雙劍3,蓋珂珂2,4
(1.北京理工大學 計算機學院,北京100081;2.北京理工大學長三角研究院(嘉興),浙江 嘉興314019; 3.中國船舶工業(yè)綜合技術經(jīng)濟研究院,北京100081;4.北京理工大學 網(wǎng)絡空間安全學院,北京100081)
摘要: 基于深度學習的目標檢測技術被廣泛應用于醫(yī)療檢測領域,該技術依賴大量醫(yī)療影像訓練分類模型,從而為醫(yī)生決策提供有力的輔助醫(yī)療手段。因涉及患者隱私并直接關系到醫(yī)生診斷,所以醫(yī)療影像數(shù)據(jù)的共享必須保護患者隱私并確保數(shù)據(jù)準確不被篡改,而現(xiàn)有中心化的醫(yī)療數(shù)據(jù)存儲方案面臨隱私泄露等諸多安全問題。提出了一種基于區(qū)塊鏈的醫(yī)療影像數(shù)據(jù)人工智能檢測模型。該模型針對目標檢測技術輔助醫(yī)生診斷的問題,采用區(qū)塊鏈技術實現(xiàn)去中心化、不可篡改的訓練參數(shù)聚合,通過加密和簽名技術保護數(shù)據(jù)隱私,利用智能合約評估服務器診斷準確率,有助于解決醫(yī)療數(shù)據(jù)壁壘和醫(yī)療隱私泄露問題。
中圖分類號: TP311
文獻標識碼: A
DOI: 10.19358/j.issn.2097-1788.2022.04.003
引用格式: 陳思源,譚艾迪,魏雙劍,等. 基于區(qū)塊鏈的醫(yī)療影像數(shù)據(jù)人工智能檢測模型[J].網(wǎng)絡安全與數(shù)據(jù)治理,2022,41(4):21-25.
文獻標識碼: A
DOI: 10.19358/j.issn.2097-1788.2022.04.003
引用格式: 陳思源,譚艾迪,魏雙劍,等. 基于區(qū)塊鏈的醫(yī)療影像數(shù)據(jù)人工智能檢測模型[J].網(wǎng)絡安全與數(shù)據(jù)治理,2022,41(4):21-25.
Blockchain-based artificial intelligence detection model for medical data
Chen Siyuan1,2,Tan Aidi3,Wei Shuangjian3,Gai Keke2,4
(1.School of Computer Science,Beijing Institute of Technology,Beijing 100081,China; 2.Yangtze Delta Region Academy of Beijing Institute of Technology,Jiaxing 314019,China; 3.China Institute of Marine Technology and Economy,Beijing 100081,China; 4.School of Cyberspace Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
Abstract: Deep learning-based target detection technology is being widely used in the field of medical detections. For training a large number of medical images, we can construct an effective classification model to effectively predict the disease situation of patients and provide a powerful auxiliary medical means of decision-making. In order to improve the prediction accuracy, massive training data are the premise to construct an effective learning model. However, medical data involve patients′ privacy and are directly related to diagnoses. Sharing medical data needs to guarantee privacy, accuracy and tamper-proof. Existing centralized medical storage schemes face many security issues, e.g., privacy disclosure. This paper proposes a blockchain-based artificial intelligence detection model for medical data that uses a target detection technology to assist physicians during the diagnosis process. In our model, blockchain technology supports realizing the decentralized and un-tampered aggregation of training parameters. Encryption and signature technology are used to protect privacy and smart Contract is implemented to evaluate the accuracy of server diagnosis. The proposed model will contribute to solving the issues in medical data barriers and privacy disclosure.
Key words : deep learning;blockchain;secure data sharing;artificial intelligence detection
0 引言
醫(yī)院每天產(chǎn)生和診斷大量的醫(yī)療影像,據(jù)統(tǒng)計在醫(yī)療數(shù)據(jù)中,影像數(shù)據(jù)占數(shù)據(jù)總量的90%以上。隨著醫(yī)療檢測設備的更新?lián)Q代和不斷增加,影像數(shù)據(jù)以每年超過30%的增長速度急劇增加。與此形成鮮明對比的是,醫(yī)生數(shù)量緩慢增長,這使得影像診斷如閱讀分析CT(計算機斷層掃描)等工作對醫(yī)生造成的負擔日益加劇,經(jīng)驗缺乏與工作量增大容易造成誤診。隨著大數(shù)據(jù)和人工智能技術的發(fā)展,利用計算機輔助診斷,使用基于人工智能的目標檢測技術幫助醫(yī)生做出快速判斷,對減輕醫(yī)生負擔、增加診斷準確率、提高就診效率而言就顯得十分必要且具有現(xiàn)實意義。
目標檢測技術因其廣泛的現(xiàn)實應運用場景備受學術界和工業(yè)界關注。隨著計算機算力的不斷提升,目標檢測技術蓬勃發(fā)展,衍化出雙階段和單階段兩大類。
本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000004985。
作者信息:
陳思源1,2,譚艾迪3,魏雙劍3,蓋珂珂2,4
(1.北京理工大學 計算機學院,北京100081;2.北京理工大學長三角研究院(嘉興),浙江 嘉興314019;
3.中國船舶工業(yè)綜合技術經(jīng)濟研究院,北京100081;4.北京理工大學 網(wǎng)絡空間安全學院,北京100081)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。