《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 一種基于DRSN-GAN的通信信號(hào)調(diào)制識(shí)別方法
一種基于DRSN-GAN的通信信號(hào)調(diào)制識(shí)別方法
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
劉高輝,顧家華
西安理工大學(xué)自動(dòng)化與信息工程學(xué)院
摘要: 針對(duì)在小樣本和低信噪比條件下通信信號(hào)調(diào)制識(shí)別率低的問題,提出了一種基于深度殘差收縮生成對(duì)抗網(wǎng)絡(luò)(Deep Residual Shrinkage Network and Generative Adversarial Network, DRSN-GAN)的深度學(xué)習(xí)框架。首先,將信號(hào)的同相正交數(shù)據(jù)(I/Q data)作為模型輸入,通過生成器生成的數(shù)據(jù)對(duì)數(shù)據(jù)集進(jìn)行擴(kuò)充,有效解決了高質(zhì)量數(shù)據(jù)稀缺的問題,增強(qiáng)了模型的泛化能力。利用DRSN組成判別器,將經(jīng)過擴(kuò)充的數(shù)據(jù)送入DRSN進(jìn)行訓(xùn)練。同時(shí),對(duì)輸入數(shù)據(jù)在空間維度上執(zhí)行全局平均池化,利用通道注意力模塊提取I/Q信號(hào)的上下文特征,有效減少了噪聲干擾。該方法解決了因固定閾值很難適用于所有樣本而導(dǎo)致的識(shí)別準(zhǔn)確率低的問題,并在低信噪比環(huán)境下顯著提高了識(shí)別效果。實(shí)驗(yàn)結(jié)果表明,所提出的模型在信噪比為0 dB時(shí)準(zhǔn)確率達(dá)92%,對(duì)比其他模型,整體分類精度提升了3%,且在小樣本和低信噪比條件下表現(xiàn)出更強(qiáng)的魯棒性。
中圖分類號(hào):TN911文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2025.05.006
引用格式:劉高輝, 顧家華. 一種基于DRSNGAN的通信信號(hào)調(diào)制識(shí)別方法[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2025,44(5):35-41.
A communication signal modulation identification method based on DRSN-GAN
Liu Gaohui, Gu Jiahua
School of Automation and Information Engineering,Xi′an University of Technology
Abstract: A deep learning framework based on deep residual shrinkage network and generative adversarial network (DRSN-GAN) is proposed to address the problem of low recognition rate of communication signal modulation under small samples and low signal-to-noise ratio conditions. First, the in-phase orthogonal data (I/Q data) of the signal is used as the model input, and the dataset is expanded by the generative data generated by the generator, which effectively solves the problem of scarcity of high-quality data and enhances the generalization ability of the model. The DRSN is utilized to form a discriminator, and the expanded data is fed into the DRSN for training. Meanwhile, global average pooling is executed on the input data in the spatial dimension, and the channel attention module is used to extract the contextual features of the I/Q signals, which effectively reduces the noise interference. The method solves the problem of low recognition accuracy due to the difficulty of applying fixed thresholds to all samples, and significantly improves the recognition effect in a low signal-to-noise ratio environment. The experimental results show that the model proposed in this paper has an accuracy of 92% at a signal-to-noise ratio of 0 dB, which improves the overall classification accuracy by 3% compared with other models, and exhibits stronger robustness under the conditions of small samples and low signal-to-noise ratio.
Key words : modulation recognition; residual shrinkage network; generative adversarial network; deep learning

引言

自動(dòng)調(diào)制識(shí)別是指通過對(duì)接收到的信號(hào)進(jìn)行特征提取和分析,以自動(dòng)識(shí)別和分類不同的調(diào)制類型,其在無線通信、雷達(dá)系統(tǒng)和信號(hào)處理等領(lǐng)域中具有重要的應(yīng)用[1]。通過自動(dòng)調(diào)制識(shí)別,系統(tǒng)能夠快速準(zhǔn)確地識(shí)別出發(fā)送端使用的調(diào)制類型,從而幫助優(yōu)化信號(hào)處理和通信系統(tǒng)的性能。隨著無線通信技術(shù)的不斷發(fā)展,信號(hào)的調(diào)制愈加多樣,電磁環(huán)境也變得更加錯(cuò)綜復(fù)雜,因此,探索實(shí)時(shí)高效的調(diào)制識(shí)別技術(shù)具有重要的現(xiàn)實(shí)意義。

傳統(tǒng)調(diào)制識(shí)別方法受限于先驗(yàn)知識(shí)依賴、計(jì)算復(fù)雜度高及特征提取主觀性強(qiáng)等問題,難以滿足現(xiàn)代通信系統(tǒng)對(duì)靈活性、魯棒性和自適應(yīng)性的需求[2-4]。因此,自動(dòng)調(diào)制識(shí)別技術(shù)及其與機(jī)器學(xué)習(xí),特別是深度學(xué)習(xí)的結(jié)合,為這一難題提供了新的解決方案。深度學(xué)習(xí)以其強(qiáng)大的自動(dòng)特征提取能力、端到端學(xué)習(xí)機(jī)制及對(duì)先驗(yàn)知識(shí)要求的低門檻,成為自動(dòng)調(diào)制識(shí)別領(lǐng)域的研究熱點(diǎn)[5-7]。文獻(xiàn)[8]將改進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和長(zhǎng)短期記憶網(wǎng)絡(luò)(Long ShortTerm Memory, LSTM)相結(jié)合,以進(jìn)一步提高性能并降低深度學(xué)習(xí)框架的復(fù)雜性,結(jié)果表明LSTM能更好地利用連續(xù)無線信號(hào)樣本之間的時(shí)間特征,進(jìn)一步提高了對(duì)高階信號(hào)的分類能力;文獻(xiàn)[9]結(jié)合深度殘差收縮網(wǎng)絡(luò)(Deep Residual Shrinkage Network, DRSN)在信號(hào)降噪和提升訓(xùn)練效率方面的顯著優(yōu)勢(shì),以及門控循環(huán)單元在序列特征提取方面的優(yōu)秀性能,設(shè)計(jì)了一種輕量化的特征提取和分類識(shí)別模型,既保證了信號(hào)識(shí)別準(zhǔn)確率,又顯著降低了模型參數(shù)量和運(yùn)算復(fù)雜度。

然而,深度神經(jīng)網(wǎng)絡(luò)需要大量樣本來進(jìn)行訓(xùn)練[10],在無線電信號(hào)調(diào)制識(shí)別任務(wù)中常常存在樣本量不足的情況[11]。為了解決這一問題,近年來學(xué)術(shù)界和工業(yè)界對(duì)小樣本條件下的調(diào)制識(shí)別方法進(jìn)行了廣泛研究。生成對(duì)抗網(wǎng)絡(luò)(Generative Adversarial Networks,GAN)作為深度學(xué)習(xí)的一種前沿技術(shù),為調(diào)制識(shí)別領(lǐng)域帶來了新的可能性。在調(diào)制識(shí)別中,GAN可用于生成多樣化的調(diào)制信號(hào)數(shù)據(jù),解決高質(zhì)量數(shù)據(jù)稀缺的問題,同時(shí)增強(qiáng)模型的泛化能力。此外,GAN還能通過模擬低信噪比環(huán)境下的信號(hào)變化,幫助模型學(xué)習(xí)在復(fù)雜噪聲條件下的有效特征,提升識(shí)別性能。文獻(xiàn)[12]從數(shù)據(jù)生成的角度出發(fā),首次將GAN應(yīng)用于數(shù)據(jù)的分類識(shí)別。文獻(xiàn)[13]提出了一種在小樣本集條件下基于關(guān)系網(wǎng)絡(luò)的水聲通信信號(hào)調(diào)制識(shí)別方法,該方法設(shè)計(jì)了一種基于功率譜和關(guān)系網(wǎng)絡(luò)的調(diào)制識(shí)別模型,該模型通過在不同通道中構(gòu)建小樣本訓(xùn)練任務(wù)進(jìn)行優(yōu)化,這種訓(xùn)練模式提高了識(shí)別方法在目標(biāo)海域只有少量標(biāo)記樣本可用時(shí)快速分類的能力。文獻(xiàn)[14]提出了一種基于元學(xué)習(xí)的小樣本調(diào)制識(shí)別算法,該方法設(shè)計(jì)了一種由CNN和LSTM并聯(lián)組成的混合特征并行網(wǎng)絡(luò),在小樣本和高信噪比條件下有效地提高了調(diào)制識(shí)別的性能,但該方法在低信噪比條件下識(shí)別率明顯降低。

針對(duì)上述問題,本文提出了一種基于DRSN-GAN的通信信號(hào)調(diào)制識(shí)別方法。首先生成網(wǎng)絡(luò)利用噪聲生成高質(zhì)量的生成數(shù)據(jù),將數(shù)據(jù)集進(jìn)行擴(kuò)充;其次設(shè)計(jì)了一種由殘差收縮單元組成的 DRSN作為判別網(wǎng)絡(luò),利用DRSN中獨(dú)特的軟閾值化算法與注意力機(jī)制優(yōu)化特征提取,以增強(qiáng)在低信噪比環(huán)境下的識(shí)別效果。實(shí)驗(yàn)表明,本文提出的方法在小樣本和低信噪比條件下識(shí)別準(zhǔn)確率提升效果顯著。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://ihrv.cn/resource/share/2000006545


作者信息:

劉高輝, 顧家華

(西安理工大學(xué)自動(dòng)化與信息工程學(xué)院,陜西西安710048)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。