《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于深度學(xué)習(xí)的物聯(lián)網(wǎng)入侵檢測系統(tǒng)綜述
基于深度學(xué)習(xí)的物聯(lián)網(wǎng)入侵檢測系統(tǒng)綜述
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
周品希,沈岳,李偉
湖南農(nóng)業(yè)大學(xué)信息與智能科學(xué)技術(shù)學(xué)院
摘要: 物聯(lián)網(wǎng)中智能設(shè)備的互聯(lián)互通在推動(dòng)社會(huì)進(jìn)步的同時(shí),也因設(shè)備異構(gòu)性、協(xié)議多樣性和資源受限性導(dǎo)致安全威脅日益復(fù)雜化。傳統(tǒng)入侵檢測系統(tǒng)依賴特征匹配和規(guī)則定義,在面對(duì)新型攻擊和動(dòng)態(tài)攻擊模式時(shí)表現(xiàn)出局限性。系統(tǒng)梳理了深度學(xué)習(xí)技術(shù)在物聯(lián)網(wǎng)入侵檢測系統(tǒng)中的應(yīng)用進(jìn)展,通過對(duì)比分析發(fā)現(xiàn):基于深度學(xué)習(xí)的模型在檢測精度和實(shí)時(shí)性上優(yōu)于傳統(tǒng)方法,在處理空間特征、捕捉時(shí)序依賴等方面表現(xiàn)突出;無監(jiān)督學(xué)習(xí)和集成方法通過生成對(duì)抗樣本、融合多模型優(yōu)勢,有效提升了小樣本場景下的檢測魯棒性;當(dāng)前研究仍面臨數(shù)據(jù)標(biāo)注成本高、邊緣計(jì)算資源受限、動(dòng)態(tài)攻擊適應(yīng)性不足等挑戰(zhàn)。總結(jié)探討了未來研究應(yīng)聚焦輕量化、跨模態(tài)數(shù)據(jù)融合等方向,為構(gòu)建高效、自適應(yīng)的物聯(lián)網(wǎng)安全防護(hù)體系提供理論支撐。
中圖分類號(hào):TP393.08文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19358/j.issn.2097-1788.2025.06.001
引用格式:周品希,沈岳,李偉. 基于深度學(xué)習(xí)的物聯(lián)網(wǎng)入侵檢測系統(tǒng)綜述[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2025,44(6):1-10.
A review of IoT intrusion detection systems based on deep learning
Zhou Pinxi,Shen Yue,Li Wei
College of Information and Intelligence, Hunan Agricultural University
Abstract: While the interconnection of smart devices in the Internet of Things promotes social progress, it also leads to increasingly complex security threats due to device heterogeneity, protocol diversity and resource constraints. Traditional intrusion detection systems rely on feature matching and rule definition, and show limitations when facing new attacks and dynamic attack patterns. This paper systematically sorts out the application progress of deep learning technology in the intrusion detection system of the Internet of Things. Through comparative analysis, it is found that the model based on deep learning is superior to traditional methods in detection accuracy and real-time performance, and has outstanding performance in processing spatial features and capturing temporal dependencies. Unsupervised learning and integration methods effectively improve the detection robustness in small sample scenarios by generating adversarial samples and integrating the advantages of multiple models. Current research still faces challenges such as high data annotation costs, limited edge computing resources, and insufficient adaptability to dynamic attacks. This paper summarizes and discusses the directions that future research should focus on, such as lightweight and cross-modal data fusion, to provide theoretical support for building an efficient and adaptive Internet of Things security protection system.
Key words : network security; Internet of Things; intrusion detection; deep learning

引言

物聯(lián)網(wǎng)(Internet of Things, IoT)的快速發(fā)展正深刻地改變著人們的生活方式和社會(huì)的運(yùn)行模式。目前,物聯(lián)網(wǎng)應(yīng)用已經(jīng)覆蓋了智能家居、醫(yī)療健康、工業(yè)控制、智慧農(nóng)業(yè)等各個(gè)領(lǐng)域。然而,物聯(lián)網(wǎng)設(shè)備的廣泛部署和互聯(lián)互通也帶來了嚴(yán)重的安全隱患。由于物聯(lián)網(wǎng)設(shè)備資源受限、異構(gòu)性強(qiáng)、通信協(xié)議多樣等原因,以往的網(wǎng)絡(luò)安全防護(hù)手段難以適應(yīng)這一復(fù)雜的環(huán)境,導(dǎo)致物聯(lián)網(wǎng)系統(tǒng)頻繁成為網(wǎng)絡(luò)攻擊的目標(biāo),嚴(yán)重威脅著個(gè)人隱私、企業(yè)利益及國家安全[1-2]。

入侵檢測系統(tǒng)(Intrusion Detection System, IDS)憑借其能夠?qū)崟r(shí)監(jiān)控網(wǎng)絡(luò)流量,檢測并響應(yīng)異常行為,被廣泛應(yīng)用于物聯(lián)網(wǎng)安全領(lǐng)域中。早期的IDS主要依賴于特征匹配[3]和規(guī)則定義[4],然而隨著網(wǎng)絡(luò)規(guī)模的大幅擴(kuò)張以及網(wǎng)絡(luò)處理節(jié)點(diǎn)數(shù)量的激增,重要數(shù)據(jù)在不同的網(wǎng)絡(luò)節(jié)點(diǎn)之間生成和共享,同時(shí)舊攻擊發(fā)生突變或產(chǎn)生大量新型攻擊,數(shù)據(jù)傳輸量的劇增和攻擊方式的多變使其檢測效果滿足不了當(dāng)前需求。

近年來,隨著深度學(xué)習(xí)在眾多領(lǐng)域的廣泛應(yīng)用,研究人員探索了多種深度學(xué)習(xí)模型,以應(yīng)對(duì)物聯(lián)網(wǎng)環(huán)境中復(fù)雜多變的安全威脅。在物聯(lián)網(wǎng)入侵檢測中,深度學(xué)習(xí)可以從大量的網(wǎng)絡(luò)流量和設(shè)備行為中挖掘隱蔽的模式,自動(dòng)學(xué)習(xí)攻擊特征,減少對(duì)人工規(guī)則的依賴。


本文詳細(xì)內(nèi)容請下載:

http://ihrv.cn/resource/share/2000006574


作者信息:

周品希,沈岳,李偉

(湖南農(nóng)業(yè)大學(xué)信息與智能科學(xué)技術(shù)學(xué)院,湖南長沙410000) 


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。