《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 解決方案 > 電池充電器的反向電壓保護

電池充電器的反向電壓保護

2021-12-07
作者:Steven Martin,電池充電器設(shè)計經(jīng)理
來源:ADI 公司
關(guān)鍵詞: ADI 電池充電器 反向電壓保護

處理電源電壓反轉(zhuǎn)有幾種眾所周知的方法。最明顯的方法是在電源和負載之間連接一個二極管,但是由于二極管正向電壓的原因,這種做法會產(chǎn)生額外的功耗。雖然該方法很簡潔,但是二極管在便攜式或備份應(yīng)用中是不起作用的,因為電池在充電時必須吸收電流,而在不充電時則須供應(yīng)電流。

另一種方法是使用圖 1 所示的 MOSFET 電路之一。

1.jpg

當(dāng)電池接入時,電池充電器處于閑置狀態(tài),負載和電池充電器與反向電池安全去耦。然而,如果充電器變至運行狀態(tài) (例如:附聯(lián)了輸入電源連接器),則充電器在 NMOS 的柵極和源極之間產(chǎn)生一個電壓,這增強了 NMOS,從而實現(xiàn)電流傳導(dǎo)。這一點在圖 3 中更形象。

2.jpg

負載和充電器雖與反向電壓隔離,但是起保護作用的 MOSFET 現(xiàn)在面臨的一大問題是功耗過高。在這種情況下,電池充電器變成了一個電池放電器。當(dāng)電池充電器為 MOSFET 提供了足夠的柵極支持以吸收由充電器輸送的電流時,該電路將達到平衡。例如,如果一個強大 MOSFET 的 VTH 約為 2V,而且充電器能夠在 2V 電壓下提供電流,則電池充電器輸出電壓將穩(wěn)定在 2V (MOSFET 的漏極處在 2V + 電池電壓)。MOSFET 中的功耗為 ICHARGE ? (VTH + VBAT),因而使 MOSFET 升溫發(fā)熱,直到產(chǎn)生的熱量散逸離開印刷電路板。該電路的 PMOS 版本也是一樣。

下面將介紹該方法的兩種替代方案,這些替代方案各有優(yōu)缺點。

N 溝道 MOSFET 設(shè)計

第一種方案采用一個 NMOS 隔離器件,如圖 4 所示。

該電路的算法是:如果電池電壓超過了電池充電器輸出電壓,則必須停用隔離 MOSFET。

如同上述的 NMOS 方法一樣,在該電路中,MN1 連接在介于充電器/負載和電池端子之間接線的低壓側(cè)。然而,晶體管 MP1 和 Q1 現(xiàn)在提供了一個檢測電路,該電路在電池反接的情況下將停用 MN1。反接電池將 MP1 的源極升舉至高于其連接至充電器正端子的柵極。接著,MP1 的漏極通過 R1 將電流輸送至 Q1 的基極。然后,Q1 將 MN1 的柵極分流至地,防止充電電流在 MN1 中流動。R1 負責(zé)控制在反向檢測期間流到 Q1 的基極電流,而 R2 則在正常操作中為 Q1 的基極提供泄放。R3 賦予了 Q1 將 MN1 的柵極拉至地電位的權(quán)限。R3/R4 分壓器限制 MN1 柵極上的電壓,這樣?xùn)艠O電壓在反向電池?zé)岵灏纹陂g不必下降那么多。最壞情況是電池充電器已經(jīng)處于運行狀態(tài)、產(chǎn)生其恒定電壓電平,附聯(lián)了一個反接電池時。在這種情況下,必需盡可能快地關(guān)斷 MN1,以限制消耗高功率的時間。該電路帶有 R3 和 R4 的這一特殊版本最適合 12V 鉛酸電池應(yīng)用,但是在單節(jié)和兩節(jié)鋰離子電池產(chǎn)品等較低電壓應(yīng)用中,可以免除 R4。電容器 C1 提供了一個超快速充電泵,以在反向電池附聯(lián)期間下拉 MN1 的柵極電平。對于最差情形 (附聯(lián)一個反向電池時充電器已使能的狀況再次出現(xiàn)),C1 非常有用。

該電路的缺點是需要額外的組件,R3/R4 分壓器在電池上產(chǎn)生了一個雖然很小、但卻是持續(xù)的負載。

此類組件大多是纖巧的。MP1 和 Q1 不是功率器件,而且通??刹捎?SOT23-3、SC70-3 或更小的封裝。MN1 應(yīng)具有非常優(yōu)良的導(dǎo)電性,因為它是傳輸器件,但是尺寸不必很大。由于它在深三極管區(qū)工作,并且得到了大幅的柵極強化,因此其功耗即使對于導(dǎo)電性中等的器件來說也很低。例如,100m? 以下的晶體管也經(jīng)常采用 SOT23-3 封裝。

3.jpg

4.jpg

5.jpg

為了實現(xiàn)該條件,電池接入時充電器必須已經(jīng)處于運行狀態(tài)。如果電池在充電器使能之前接入,則 MP1 的柵極電壓完全由電池上拉,因而停用 MP1。當(dāng)充電器接通時,它產(chǎn)生一個受控的電流 (而不是高電流沖擊),這降低了 MP1 接通、MP2 關(guān)斷的可能性。

另一方面,如果充電器在電池附聯(lián)之前啟用,則 MP1 的柵極只需簡單地跟隨電池充電器輸出,因為它是由泄放電阻器 R2 上拉的。未接入電池時,MP1 根本沒有接通和使 MP2 脫離運行狀態(tài)的傾向。

當(dāng)充電器已經(jīng)啟動并運行、而電池附聯(lián)在后時,就會出現(xiàn)問題。在這種情況下,在充電器輸出和電池端子之間存在瞬間差異,這將促使 MP1 使 MP2 脫離運行狀態(tài),因為電池電壓強制充電器電容進行吸收。這使 MP2 從充電器電容器吸取電荷的能力與 MP1 使 MP2 脫離運行狀態(tài)的能力之間形成了競爭。

該電路也用一個鉛酸電池和 LTC4015 電池充電器進行了測試。將一個承受重負載的 6V 電源作為電池模擬器連接至一個已經(jīng)使能的電池充電器絕對不會觸發(fā)“斷開連接”狀態(tài)。所做的測試并不全面,應(yīng)在關(guān)鍵應(yīng)用中更加全面徹底地進行測試。即使電路確已鎖定,停用電池充電器并重新啟用它仍將始終導(dǎo)致重新連接。

故障狀態(tài)可通過人為操控電路 (在 R1 的頂端和電池充電器輸出之間建立臨時連接) 進行演示。然而,普遍認為該電路更傾向于連接。如果連接失敗確實成為一個問題,那么可以設(shè)計一款利用多個器件停用電池充電器的電路。圖 12 給出了一個更加完整的電路例子。

圖 10 示出了充電器被停用的 PMOS 保護電路的效果。

請注意,不論什么情況,電池充電器和負載電壓都不會出現(xiàn)負電壓傳送。

圖 11 示出了該電路處于“當(dāng)反接電池進行熱插拔時充電器已進入運行狀態(tài)”這種不利情況下。

與 NMOS 電路的效果相差無幾,在斷開電路連接使傳輸晶體管 MP2 脫離運行狀態(tài)之前,反向電池略微下拉充電器和負載電壓。

在電路的這個版本中,晶體管 MP2 必須能夠經(jīng)受兩倍于電池電壓的 VDS (一個用于充電器,一個用于反接電池) 和等于電池電壓的 VGS。另一方面,MP1 必須能夠經(jīng)受等于電池電壓的 VDS和兩倍于電池電壓的 VGS。這項要求令人遺憾,因為對于 MOSFET 晶體管來說,額定 VDS始終超過額定 VGS??梢哉业骄哂?30V VGS 容限和 40V VDS 容限的晶體管,適合鉛酸電池應(yīng)用。為了支持電壓較高的電池,必須增添齊納二極管和限流電阻器來修改電路。

圖 12 示出了一個能夠處理兩個串聯(lián)堆疊鉛酸電池的電路實例。

6.jpg

D1、D3 和 R3 保護 MP2 和 MP3 的柵極免受高電壓的損壞。當(dāng)一個反接電池進行熱插拔時,D2 可防止 MP3 的柵極以及電池充電器輸出快速移動至地電位以下。當(dāng)電路具有反接電池或處于錯誤斷開連接閉鎖狀態(tài)時,MP1 和 R1 可檢測出來,并利用缺失的 LTC4015 的 RT 特性來停用電池充電器。

結(jié)論

可以開發(fā)一種面向基于電池充電器應(yīng)用的反向電壓保護電路。人們開發(fā)了一些電路并進行了簡略的測試,測試結(jié)果令人鼓舞。對于反向電池問題并不存在什么高招,不過,希望本文介紹的方法能夠提供充分的啟示,即存在一種簡單、低成本的解決方案。

AETweidian.jpg

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。