《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 测试测量 > 设计应用 > 用于自动视力检测的手势识别方法研究
用于自动视力检测的手势识别方法研究
信息技术与网络安全
何启莉,何家峰,郭 娟
(广东工业大学 信息工程学院,广东 广州510006)
摘要: 对于自动视力检测系统,手势识别是关键问题,但是采用传统卷积神经网络模型识别手势存在过拟合、计算量大等问题。提出了一种GR-AlexNet模型,对AlexNet网络模型进行了适应性修改和优化:为了加快计算速度,用7×7、5×5、1×1的三个小卷积核替代原来的11×11的大卷积核,并删除LRN层和一个全连接层;为了减轻过拟合效应,在每次卷积后都加上一个Dropout优化。对同一数据集分别使用LeNet模型、AlexNet模型、VGG16模型与GR-AlexNet模型进行对比实验。实验表明GR-AlexNet模型在识别准确率上较传统的模型有一定的提高,能抑制过拟合现象,并且具有更快的训练速度。
中圖分類號: TP391.41
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.03.006
引用格式: 何啟莉,何家峰,郭娟. 用于自動視力檢測的手勢識別方法研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(3):32-37,47.
Research on gesture recognition method for automatic vision detection
He Qili,He Jiafeng,Guo Juan
(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
Abstract: For automatic vision detection systems, gesture recognition is a key issue, but the traditional convolutional neural network model to recognize gestures has problems such as over-fitting and large amount of calculation. This paper proposes a GR-Alexnet model, which adaptively modifies and optimizes the Alexnet network model. In order to speed up the calculation, three small convolution kernels of 7×7, 5×5, and 1×1 are used to replace the original 11×11 large convolution kernel, and delete the LRN layer and a fully connected layer; in order to reduce the over-fitting effect, a dropout optimization is added after each convolution. The LeNet model, the Alexnet model ,the VGG16 model and the GR-Alexnet model were used for comparative experiments on the same data set. Experiments show that the GR-Alexnet model has a certain improvement in recognition accuracy compared with the traditional model, can suppress the over-fitting phenomenon, and has a faster training speed.
Key words : automatic vision detection;OpenCV;gesture recognition;Gesture Recognition AlexNet(GR-AlexNet)

0 引言

隨著人工智能技術(shù)的進(jìn)步,智能化設(shè)備逐漸融入到人們生活的方方面面。傳統(tǒng)的醫(yī)療檢測儀器逐漸被智能電子儀器所替代,如心率測量儀、血壓檢測儀等,然而視力檢測這一基本的體檢項目仍然沿用傳統(tǒng)的人工檢測方法,檢測效率低,消耗人力且極不方便。隨著計算機(jī)視覺技術(shù)迅速發(fā)展,手勢識別也逐漸成為智能人機(jī)交互的重要研究領(lǐng)域[1-4]。本文通過對視力檢測進(jìn)行手勢識別,達(dá)到自動化視力檢測的目的。





本文詳細(xì)內(nèi)容請下載:http://ihrv.cn/resource/share/2000003422




作者信息:

何啟莉,何家峰,郭  娟

(廣東工業(yè)大學(xué)  信息工程學(xué)院,廣東 廣州510006)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。