《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 云螢火蟲算法改進(jìn)二維Tsallis熵的醫(yī)學(xué)圖像分割
云螢火蟲算法改進(jìn)二維Tsallis熵的醫(yī)學(xué)圖像分割
2020年電子技術(shù)應(yīng)用第6期
徐 浩1,王 霜2
1.溫州醫(yī)科大學(xué)附屬眼視光醫(yī)院,浙江 溫州325000;2.西安科技大學(xué),陜西 西安710054
摘要: 為提高醫(yī)學(xué)圖像分割的效果,針對二維Tsallis熵閾值法圖像分割效果受參數(shù)q選擇的影響,提出一種基于云模型螢火蟲算法優(yōu)化二維Tsallis熵的醫(yī)學(xué)圖像分割算法。首先,將云模型引入螢火蟲算法,提高螢火蟲算法的收斂速度和尋優(yōu)能力;其次,選擇均勻性測度作為醫(yī)學(xué)圖像分割的評價(jià)指標(biāo),運(yùn)用CMFA算法對二維Tsallis熵閾值法參數(shù)q進(jìn)行自適應(yīng)尋優(yōu)。研究結(jié)果表明,與FA-Tsallis和Tsallis相比較,CMFA-Tsallis的均勻性測度最高,分割出來的結(jié)果邊界清晰,從而證明本算法的有效性。
中圖分類號(hào): TN92;TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.191116
中文引用格式: 徐浩,王霜. 云螢火蟲算法改進(jìn)二維Tsallis熵的醫(yī)學(xué)圖像分割[J].電子技術(shù)應(yīng)用,2020,46(6):73-76,81.
英文引用格式: Xu Hao,Wang Shuang. Medical image segmentation using two-dimensional Tsallis entropy improved by cloud model firefly algorithm[J]. Application of Electronic Technique,2020,46(6):73-76,81.
Medical image segmentation using two-dimensional Tsallis entropy improved by cloud model firefly algorithm
Xu Hao1,Wang Shuang2
1.Department of Optometry,Wenzhou Medical University,Wenzhou 325000,China; 2.Xi′an University of Science and Technology,Xi′an 710054,China
Abstract: In order to improve the effect of medical image segmentation, for the effect of two-dimensional Tsallis entropy threshold method,two-dimensional Tsallis Entropy improved by cloudmodel firefly algorithm is applied to medical image segmentation algorithm. Firstly, in order to improve the convergence speed and optimization ability,the cloud model is introduced into the Firefly algorithm. Secondly, the homogeneity measure was chosen as the evaluation index of medical image segmentation, and the parameter q of the two-dimensional Tsallis entropy threshold method was optimized by CMFA algorithm. The results show that CMFA-Tsallis has the highest homogeneity measure compared with FA-Tsallis and Tsallis, and the result boundary is clear, thus proving the effectiveness of this algorithm.
Key words : medical image;image segmentation;Tsallis entropy;firefly algorithm;cloud model

0 引言

    圖像分割是指從圖像中提取感興趣的區(qū)域,由于人體組織的特性,醫(yī)學(xué)圖像邊界模糊以及對比度低,使得醫(yī)學(xué)圖像分割成為一個(gè)難點(diǎn)[1]。文獻(xiàn)[2]提出一種基于二進(jìn)制交叉的實(shí)數(shù)編碼遺傳算法的腦部圖像多級閾值分割方法。文獻(xiàn)[3]提出一種基于螢火蟲算法的二維熵多閾值圖像分割算法,該方法可以有效提高圖像的分割速度,但由于搜索空間的局限性,圖像分割精度較低。文獻(xiàn)[4]運(yùn)用粒子群算法對二維Tsallis熵的參數(shù)q進(jìn)行優(yōu)化選擇,該方法可以較好地分割圖像。文獻(xiàn)[5]針對二維最大熵分割圖像存在計(jì)算量大的問題,將人工蜂群算法應(yīng)用于二維最大熵優(yōu)化,結(jié)果表明,該方法抗噪性強(qiáng)且收斂速度快。

    本文為提高醫(yī)學(xué)圖像分割的效果,針對二維Tsallis熵閾值法圖像分割效果受參數(shù)q選擇的影響,提出一種基于云模型螢火蟲算法優(yōu)化二維Tsallis熵的醫(yī)學(xué)圖像分割算法。最后通過仿真研究,證明了本文算法的有效性。




論文詳細(xì)內(nèi)容請下載http://ihrv.cn/resource/share/2000002849




作者信息:

徐  浩1,王  霜2

(1.溫州醫(yī)科大學(xué)附屬眼視光醫(yī)院,浙江 溫州325000;2.西安科技大學(xué),陜西 西安710054)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。