《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 業(yè)界動態(tài) > 機器學(xué)習(xí)在無人駕駛中的現(xiàn)狀及挑戰(zhàn)

機器學(xué)習(xí)在無人駕駛中的現(xiàn)狀及挑戰(zhàn)

2019-01-18

  1月10日,在青島舉行的2019國家智能產(chǎn)業(yè)峰會智能駕駛平行論壇上,孫振平研究員結(jié)合國內(nèi)外機器學(xué)習(xí)相關(guān)技術(shù)在智能駕駛領(lǐng)域的研究現(xiàn)狀和課題組近年來的一些研究成果,向與會人員分享了題為《機器學(xué)習(xí)在無人駕駛中的應(yīng)用現(xiàn)狀及面臨挑戰(zhàn)》的精彩報告。

1547812828966113.jpg

  國防科技大學(xué)智能科學(xué)學(xué)院無人系統(tǒng)研究所副所長孫振平

  談到國內(nèi)自動駕駛研究的起源,總繞不開一所有名的高?!獓揽萍即髮W(xué)。20世紀(jì)80年代末,國防科技大學(xué)先后研制出基于視覺的CITAVT系列智能車輛。1992年,國防科技大學(xué)成功研制出中國第一輛真正意義上的無人駕駛汽車。2011年7月,由一汽集團與國防科技大學(xué)共同研制的紅旗HQ3無人駕駛汽車完成了286km的面向高速公路的全程無人駕駛試驗,而在背后主持研究紅旗無人駕駛汽車實現(xiàn)高速長距離無人駕駛的,便是國防科技大學(xué)智能科學(xué)學(xué)院無人系統(tǒng)研究所副所長孫振平研究員。2012年,孫振平研究員作為技術(shù)負(fù)責(zé)人,組織團隊研制了我國第一臺邊防無人巡邏車。同時,他作為主要技術(shù)骨干或負(fù)責(zé)人與團隊一起參加了十余次國家自然科學(xué)基金委委主辦“中國智能車未來挑戰(zhàn)賽”和軍隊“跨越險阻”無人系統(tǒng)挑戰(zhàn)賽,多次獲得冠軍。

  1月10日在青島舉行的2019國家智能產(chǎn)業(yè)峰會智能駕駛平行論壇上,孫振平研究員結(jié)合國內(nèi)外機器學(xué)習(xí)相關(guān)技術(shù)在智能駕駛領(lǐng)域的研究現(xiàn)狀和課題組近年來的一些研究成果,向與會人員分享了題為《機器學(xué)習(xí)在無人駕駛中的應(yīng)用現(xiàn)狀及面臨挑戰(zhàn)》的精彩報告。

  孫振平研究員在報告中表達(dá)了一下觀點:

  機器學(xué)習(xí)對解決無人駕駛問題很重要,但不是全部;

  深度神經(jīng)網(wǎng)絡(luò)是場景建模與理解的有力工具;

  統(tǒng)計學(xué)習(xí)、增強學(xué)習(xí)對于解決行為決策問題會有所幫助,前提是人工建立合適的決策模型;

  用機器學(xué)習(xí)方法解決動力學(xué)控制問題似乎并不簡單;

  能夠?qū)崿F(xiàn)任務(wù)、本體狀態(tài)、環(huán)境信息并行輸入的網(wǎng)絡(luò)結(jié)構(gòu)是研究的重點;

  現(xiàn)有計算能力仍不足以支持深度神經(jīng)網(wǎng)絡(luò)在無人車中的大規(guī)模應(yīng)用

  以下是孫振平研究員在2019國家智能產(chǎn)業(yè)峰會的報告,智車科技在不改變原意的基礎(chǔ)上進(jìn)行了修改:

  大家好,非常榮幸能在這兒跟大家一塊聊無人駕駛,因為機器學(xué)習(xí)在無人駕駛應(yīng)用方面比較熱,針對這個事情跟大家分享一點思考。

  大家可能不知道,國防科大在無人駕駛方面應(yīng)該說做的歷史也比較長了,這些年有一些成績也有很多不足,特別是最近幾年我們看到整個社會對無人駕駛特別追捧,我們參與其中,肯定是非常非常的高興,但是在熱的過程中,我們也得認(rèn)真地去思考,是不是無人駕駛到現(xiàn)在已經(jīng)比較好的被解決了,這個我們還是要冷靜地去思考的。我個人就針對這方面的一些情況跟大家一塊兒分享一下。主要就是目前國內(nèi)外的發(fā)展情況,以及我們自己在這方面做的一些工作。

  丨無人車的控制結(jié)構(gòu)

  說到無人駕駛,從概念上來,大家對這個事情應(yīng)該都非常清楚了,無非就是給車裝上各種各樣的傳感器,讓它能夠自己理解周圍的環(huán)境,自己做規(guī)劃,自己選擇運動的路徑,直到控制自己的運動。在這個過程中,希望人不參與或者說盡可能少的參與,這么多的傳感器到底怎么組成無人駕駛的系統(tǒng)?這個事如果拿人來類比的話,比較容易理解。一個駕駛員開車感知周圍的環(huán)境,往往是通過我們的眼睛、耳朵等一些感覺器官。在感知的基礎(chǔ)上當(dāng)然要做決策規(guī)劃,主要是大腦來完成的,決策規(guī)劃的結(jié)果就是怎么樣控制車,操作機構(gòu)來實現(xiàn)對車輛的控制。

  對于我們的無人駕駛系統(tǒng)來說,很顯然從原理上也是一樣的,我們必須去構(gòu)建它的眼睛。這個主要兩大類,一類是環(huán)境感知的傳感器,二是運動感知的傳感器。其中大腦是什么?對于無人駕駛來說,當(dāng)然就是運行在計算機上人工智能的程序,這個程序它綜合了傳感器信息和用戶的任務(wù)輸入,最后產(chǎn)生控制命令,控制命令就控制相應(yīng)的一些執(zhí)行機構(gòu)來控制整個車的運動,這個我想從原理上來說就是這樣的。

  無人駕駛的技術(shù)真正困難就是人工智能的程序。我們怎么去設(shè)計它,說到設(shè)計,實際上在人工智能應(yīng)用在移動信息研究中,有一些基本的方案,大家不妨一起簡單地回顧一下。

1547812829656451.jpg

  在人工智能研究中,有幾種基本的控制結(jié)構(gòu),一是慎思形式的,什么意思?我們要去顯示做決策規(guī)劃和執(zhí)行控制這樣的環(huán)節(jié),對應(yīng)的是一個一個程序模塊。當(dāng)然要設(shè)計一個這樣的結(jié)構(gòu),或者設(shè)計這樣的軟件系統(tǒng),需要很多人參與,需要人的智力的投入,這個很顯然我們覺得做起來非常麻煩。

  另外一個比較直接的想法,當(dāng)然就是所謂的反應(yīng)式,我們最好能夠設(shè)計一個簡單的程序,不需要知道它內(nèi)部是怎么工作的,能夠直接從傳感器到執(zhí)行器的映射,這就是所謂的反應(yīng)式。

  當(dāng)然實際在研究過程中,最后大家都發(fā)現(xiàn)不管是慎思式還是反應(yīng)式做來做去都不能夠很好的解決問題,怎么辦?人類最大的本事就是把各式各樣的方法混在一起就是混合式,反應(yīng)式大家很容易理解,如果有一個控制方向我們用一個狀態(tài)方程組就能夠很好地描述它,當(dāng)我設(shè)計一個簡單的控制器就能夠?qū)崿F(xiàn)對這樣對象的控制。對于我們說的機器人和無人車也不例外,我們能夠很好地描述清楚,就可以設(shè)計出一個簡單的控制器出來。最早在1948年的時候,當(dāng)時控制論剛剛產(chǎn)生,就有人設(shè)計了一個移動的機器人系統(tǒng)。這個慎思式,實際上大家關(guān)注的最典型的可能是世界上第一個自主的機器人,就采用這種慎思式的研究。SHakey研究了一個機器人只要能夠不碰撞運動就可以了,這是1968年做出來的,這個也是我們現(xiàn)在智能機器人(無人車)研究真正的現(xiàn)代意義上的開端。

1547812833735846.jpg

  在這些研究基礎(chǔ)上,到了1986年的時候,MIT提出了一種所謂的包容式結(jié)構(gòu),這個包容式結(jié)構(gòu),大家仔細(xì)去分析一下就會發(fā)現(xiàn),它實際上是一種混合式的結(jié)構(gòu)。如果只是把行為定義為行走的話當(dāng)然很簡單,我們就可以設(shè)計反應(yīng)式控制來實現(xiàn)。隨著反應(yīng)式變得越來越復(fù)雜,就很難用反應(yīng)式結(jié)構(gòu)去實現(xiàn)了。這個事情我個人在看了這么多文獻(xiàn)之后,大概同樣是在1980年代,美國的James他提出了所謂4D/RCS結(jié)構(gòu),已經(jīng)是非常完備的或者非常好的方法或者是一個體系了,甚至他們也給出了一套工程化的方法,怎么設(shè)計一個復(fù)雜的機器人系統(tǒng)或者是無人車,我們自己也是基本上參照4D/RCS這樣復(fù)雜系統(tǒng)的控制結(jié)構(gòu)來設(shè)計我們的無人車的。

1547812834722449.jpg

  這是我們的無人車采取的一種結(jié)構(gòu),下面最基本的就是底層的執(zhí)行結(jié)構(gòu)以及到上面的交通,對交通場景的認(rèn)知、決策等等。只有知道了結(jié)構(gòu),我們反過來才能說機器學(xué)習(xí)在無人車中怎么用,我們剛才說了,對于無人車來說,它的核心就是人工智能程序,機器學(xué)習(xí)又是人工智能里面的一個重要的內(nèi)容,大家當(dāng)然就想著,是不是能夠把機器學(xué)習(xí)用在無人車上,讓無人車能夠變得越來越聰明,能夠越來越好的去適應(yīng)環(huán)境,我們就一起來看一看機器學(xué)習(xí)在無人車上到底能怎么用。

  丨機器學(xué)習(xí)的端對端控制

  當(dāng)然一種應(yīng)用就是針對我們前面說反應(yīng)式的結(jié)構(gòu),假設(shè)整個控制器我們不管它的內(nèi)部結(jié)構(gòu),完全由一個神經(jīng)網(wǎng)絡(luò)這樣的程序來解決,這個大概就是現(xiàn)在比較端對端的控制,什么意思?直接從傳感器到車輛的動作,這就是所謂的端對端的學(xué)習(xí)控制,端對端本身也不是新鮮的事物,在1989年的時候美國機器人研究所就用當(dāng)時的三層網(wǎng)絡(luò)就實現(xiàn)了簡單的無人駕駛,因為當(dāng)時的網(wǎng)絡(luò)它的標(biāo)定能力是非常有限的,因此它能夠完成的任務(wù)也是非常簡單的。

  神經(jīng)網(wǎng)絡(luò)大家知道從80年代到90年代甚至到2000年之后很長一段時間,發(fā)展是非常非常緩慢的,目前兩種方案,一種是前饋神經(jīng)網(wǎng)絡(luò),一種基于遞歸神經(jīng)網(wǎng)絡(luò),都在做一些研究。

  大家可以看到上面這個視頻,英偉達(dá)在2016年的神經(jīng)網(wǎng)絡(luò)端對端控制,說到這里是不是用端對端學(xué)習(xí)控制這個問題就解決了,實際上大家仔細(xì)看是不可能的,前面有一個十字路口,用端對端學(xué)習(xí)控制怎么能夠?qū)崿F(xiàn)讓車選擇不同的路線呢?這個事情在他做的這個實驗里面就不涉及到這個問題。

  實際上這個問題英偉達(dá)做這個實驗還有很多問題沒有解決,從控制上來說,車要適應(yīng)不同的坡路和材質(zhì),這個本身就是很復(fù)雜的,對于剛才說的端對端的學(xué)習(xí)控制,要做采集數(shù)據(jù)是非常困難的,而網(wǎng)絡(luò)本身結(jié)構(gòu)也沒有辦法支持,退而求其次就有其他的研究,大家去看一下Deep Driving:Learning Affordance for Direct Perception in Autonomous Driving 這篇文章,這個想法就跟這個端對端不太一樣,它把這個系統(tǒng)分為控制和感知,把控制環(huán)節(jié)還是用控制的方法去做,但是后面感知希望用神經(jīng)網(wǎng)絡(luò)來解決,設(shè)計一個神經(jīng)網(wǎng)絡(luò),輸入一個圖象,輸出就是車道和車道上的線得到這樣一個抽象的模型,把這個模型再由后端輸入再去控制車輛運動,這個是他們展示的一段視頻,這個是神經(jīng)網(wǎng)絡(luò)的輸入,這個就是網(wǎng)絡(luò)的輸出,后端控制的輸入,這是他們做的一個實驗。

  這種端對端的方


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。