《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于GaN HEMT的S波段的功率放大器設(shè)計(jì)
基于GaN HEMT的S波段的功率放大器設(shè)計(jì)
2019年電子技術(shù)應(yīng)用第1期
張書(shū)源,鐘世昌
南京電子器件研究所,江蘇 南京210016
摘要: 采用內(nèi)匹配技術(shù),使用單胞的電路結(jié)構(gòu),設(shè)計(jì)并實(shí)現(xiàn)了一款3.8~4.2 GHz的功率放大器。該放大器基于南京電子器件研究所自主研制的GaN HEMT管芯芯片。通過(guò)優(yōu)化設(shè)計(jì)該放大器在10%的相對(duì)帶寬、漏源電壓28 V、連續(xù)波的工作條件下,實(shí)現(xiàn)了輸出峰值功率Pout大于30 W,功率附加效率PAE大于48%,充分顯示了GaN功率器件寬帶、高效和高功率的工作性能,具有廣闊的工程應(yīng)用前景。
中圖分類(lèi)號(hào): TN722.7
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.181429
中文引用格式: 張書(shū)源,鐘世昌. 基于GaN HEMT的S波段的功率放大器設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2019,45(1):39-41,50.
英文引用格式: Zhang Shuyuan,Zhong Shichang. Design of S band power amplifier based on the GaN HEMT[J]. Application of Electronic Technique,2019,45(1):39-41,50.
Design of S band power amplifier based on the GaN HEMT
Zhang Shuyuan,Zhong Shichang
Nanjing Electronic Device Institute,Nanjing 210016,China
Abstract: This paper uses internal matching technology and the cell structure of a single cell to design and implement a design of 3.8~4.2 GHz power amplifier. The amplifier is based on a GaN HEMT independently developed by Nanjing Electronic Device Institute. By optimizing the design, the amplifier achieves a peak output power of Pout greater than 30 W and the PAE of the amplifier greater than 48%, at a relative bandwidth of 10%, a drain-source voltage of 28 V, and a continuous wave operating condition,which fully shows the GaN power device′s broadband, high-efficiency, and high-power performance,so the device has broad prospects for engineering applications.
Key words : internal matching;high efficiency;power amplifier;S band

0 引言

    近年來(lái),寬禁帶材料與微波功率器件發(fā)展非常迅猛。GaN材料作為第三代半導(dǎo)體的典型代表,具有很多優(yōu)異的特性,如禁帶寬度寬、擊穿場(chǎng)強(qiáng)高、熱傳導(dǎo)率高和峰值電子漂移速度高,所以GaN材料可以很好地滿足高溫、高頻和高功率等工作要求。同時(shí)由于目前的電子整機(jī)系統(tǒng)要求功率放大器具有較寬的帶寬、較大的功率和較高的效率,而GaAs器件受自身功率密度的限制,在兼顧體積時(shí)不能保證較大功率的輸出,并且用GaAs器件制作的功率放大器效率較低。相比之下GaN器件在這方面的優(yōu)點(diǎn)就變得非常突出,GaN器件制成的功率放大器效率高于GaAs,且GaN可以高電壓工作的特點(diǎn)將會(huì)使其成為未來(lái)工程應(yīng)用的首選[1]。

    與以多個(gè)晶體管并聯(lián)來(lái)實(shí)現(xiàn)的功率放大器相比,單胞的功率放大器具有更高的能效,同時(shí)這樣也可使得功率器件的輸入、輸出端口的阻抗與多胞器件相比更大,因此在設(shè)計(jì)和使用時(shí),由輸入、輸出引線微小的變化、管殼以及其他寄生參數(shù)等帶來(lái)的對(duì)電路性能的影響就比較小,甚至可以忽略不計(jì),這樣實(shí)際電路的性能與仿真的性能更為接近,可以保證電路的性能。同時(shí)本文采用了內(nèi)匹配的方式,即在管殼內(nèi)部引入匹配電路,通過(guò)較高進(jìn)度的薄膜電路對(duì)功率芯片進(jìn)行匹配,可進(jìn)一步減小外界寄生參數(shù)對(duì)電路性能的影響,更加有利于電路的設(shè)計(jì)。

    目前國(guó)內(nèi)外對(duì)GaN HEMT功率放大器的研究有很多,其參數(shù)對(duì)比見(jiàn)表1,可以看出,與現(xiàn)有的GaN HEMT 功率放大器設(shè)計(jì)相比,本文設(shè)計(jì)的功率放大器在輸出功率較高的同時(shí),也具有較高的能效,同時(shí),應(yīng)用的頻段也屬于S波段中比較高的頻段。

wdz6-b1.gif

    本文運(yùn)用傳輸線理論,采用單胞的電路結(jié)構(gòu),用微波仿真軟件ADS對(duì)柵寬為9.6 mm GaN功率芯片進(jìn)行阻抗匹配,實(shí)現(xiàn)了在3.8~4.2 GHz頻段的連續(xù)波輸入條件下,輸出功率大于30 W,相對(duì)帶寬25%,功率附加效率大于48%的GaN功率放大器。

1 功放的設(shè)計(jì)

1.1 器件的選擇

    設(shè)計(jì)功率放大器時(shí),選擇合適柵寬的功率芯片很重要,如果功率芯片的柵寬太小,則無(wú)法輸出所要求的功率;如果柵寬過(guò)大,又會(huì)造成效率的降低。本文的設(shè)計(jì)目標(biāo)是在3.8~4.2 GHz的連續(xù)波輸入的條件下,達(dá)到30 W功率的輸出,附加效率大于48%。南京電子器件研究所自主研制的GaN功率芯片,在28 V漏極電壓S波段條件下具有4 W/mm的功率密度,按照此值進(jìn)行計(jì)算,選取了9.6 mm柵寬的管芯。

1.2 匹配電路的實(shí)現(xiàn)

    較為常見(jiàn)的匹配電路模型有L型、T型以及π型匹配網(wǎng)絡(luò)。L型匹配網(wǎng)絡(luò)由兩個(gè)不同性質(zhì)的電抗元件構(gòu)成,它是一個(gè)窄帶網(wǎng)絡(luò),具有濾波功能,濾波性能取決于匹配網(wǎng)絡(luò)的Q值,為了實(shí)現(xiàn)更大的帶寬和阻抗變換,匹配網(wǎng)絡(luò)就需要更多的元件,這時(shí)T型和π型匹配網(wǎng)絡(luò)應(yīng)用就更為常見(jiàn),而這兩個(gè)匹配網(wǎng)絡(luò)都是在L型匹配網(wǎng)絡(luò)上的優(yōu)化。當(dāng)需要實(shí)現(xiàn)的帶寬繼續(xù)增加時(shí),這就需要進(jìn)行多節(jié)匹配,而這時(shí)采用的基礎(chǔ)匹配網(wǎng)絡(luò)就是L型網(wǎng)絡(luò)結(jié)構(gòu)。

    本文設(shè)計(jì)的功率放大器的相對(duì)帶寬為10%,已屬于寬帶范圍,因此電路匹配方式為T(mén)型、π型匹配網(wǎng)絡(luò)或者多節(jié)匹配方式。對(duì)于電路中的電感以及電容的參數(shù)選取,有兩種方式,一是通過(guò)計(jì)算的方式,二是根據(jù)阻抗-導(dǎo)納史密斯圓圖進(jìn)行阻抗匹配。

    計(jì)算方式本文以一個(gè)2節(jié)L型匹配網(wǎng)絡(luò)為例,如圖1所示。

wdz6-t1.gif

    阻抗變換是一步步執(zhí)行的,從RS到R1,再到RL,當(dāng)相鄰電阻比相等時(shí),可以得到最優(yōu)化帶寬:

    wdz6-gs1.gif

    由式(1)得出中間等效電阻R1的值,然后可以得出由此最優(yōu)節(jié)點(diǎn)品質(zhì)因數(shù)Q的值為:

    wdz6-gs2.gif

    再根據(jù)品質(zhì)因數(shù)Q的計(jì)算式得到相應(yīng)的C、L的值,見(jiàn)式(3):

    wdz6-gs3.gif

    由此可以得到最優(yōu)的2節(jié)L型阻抗匹配網(wǎng)絡(luò)的各個(gè)電抗元件的數(shù)值。

    利用阻抗-導(dǎo)納史密斯圓圖進(jìn)行阻抗匹配,如圖2所示。

wdz6-t2.gif

    本文選取了利用史密斯圓圖進(jìn)行匹配的方式,對(duì)于匹配電路的設(shè)計(jì)過(guò)程,本文先進(jìn)行輸出匹配電路的設(shè)計(jì),然后再進(jìn)行輸入匹配電路設(shè)計(jì)。

1.2.1 輸出匹配電路設(shè)計(jì)

    實(shí)際功放設(shè)計(jì)中,為追求最大的器件功率輸出,放大器的輸出端一般采用最佳功率匹配電路。管芯的輸出阻抗通常可以等效為一個(gè)電阻與一個(gè)電容的并聯(lián)形式,電阻的阻值與電容的容值都與柵寬有著直接的聯(lián)系,電阻與柵寬成反比,即,R×L=90 Ω·mm;而電容與柵寬成正比,即C/L=0.4 pF/mm。因此可以得出管芯的輸出阻抗為ZS=(9.375 Ω//3.84 pF)

    然后利用ADS軟件中的Smith Chart Utility進(jìn)行阻抗匹配,本文對(duì)輸出匹配采用了T型網(wǎng)絡(luò)匹配,匹配電路見(jiàn)圖3。

wdz6-t3.gif

1.2.2 輸入匹配電路設(shè)計(jì)

    輸入電路通常采用基于小信號(hào)下的最佳增益匹配以達(dá)到最優(yōu)功率輸出。首先需要得到管芯的小信號(hào)輸入下的S參數(shù)模型,將輸出匹配電路中的管芯等效RC并聯(lián)電路用該S參數(shù)模型進(jìn)行替換,同時(shí)對(duì)該電路進(jìn)行仿真得到從管芯輸入端看過(guò)去的雙端口網(wǎng)絡(luò)的S11參數(shù),得到相應(yīng)的等效輸出阻抗,然后進(jìn)行仿真,考慮帶寬的影響,本文采用了2節(jié)L型網(wǎng)絡(luò)匹配的設(shè)計(jì),見(jiàn)圖4。

wdz6-t4.gif

    實(shí)際電路中不存在理想的電感電容元件,而且本文采用的是內(nèi)匹配的方式,需要將各元件用相應(yīng)的微帶線進(jìn)行替換。同時(shí)各節(jié)微帶線連接采用金絲相連,在對(duì)微帶線匹配電路進(jìn)行仿真時(shí)都要進(jìn)行考慮,盡量減少額外的寄生參數(shù)的影響。

2 放大器的測(cè)試與數(shù)據(jù)分析

    在功放測(cè)試中,采用柵極偏壓-2.5 V,漏極偏壓28 V,輸入信號(hào)為連續(xù)波的測(cè)試條件進(jìn)行測(cè)試,經(jīng)測(cè)試,將輸入功率為25 dBm,作為小信號(hào)輸入功率;將輸入功率設(shè)定為36 dBm,作為達(dá)到飽和輸出功率。

    將實(shí)際小信號(hào)增益與仿真結(jié)果進(jìn)行對(duì)比,如圖5所示。

wdz6-t5.gif

    經(jīng)對(duì)比可以發(fā)現(xiàn)實(shí)際的測(cè)試結(jié)果與仿真的數(shù)據(jù)基本接近,鑒于存測(cè)試架、管殼的寄生參數(shù)等因素導(dǎo)致的衰減影響,可以認(rèn)為樣品與仿真基本一致。

    當(dāng)輸入功率為36 dBm時(shí),功放的飽和輸出功率和附加效率(PAE)測(cè)試結(jié)果如圖6所示。

wdz6-t6.gif

    測(cè)試結(jié)果顯示,在3.8~4.2 GHz的工作頻率內(nèi),功率放大器的飽和輸出功率最小值為45.4 dBm,最大值為46.5 dBm,整個(gè)工作頻帶內(nèi)的附加效率超過(guò)了48%,最大附加效率點(diǎn)達(dá)到了55.1%,滿足設(shè)計(jì)要求。

    至此本文設(shè)計(jì)的功率放大器其實(shí)測(cè)的小信號(hào)增益測(cè)試數(shù)據(jù)與仿真數(shù)據(jù)的趨勢(shì)基本一致,與設(shè)計(jì)相符,大信號(hào)輸入條件下的飽和輸出功率與其附加效率均滿足設(shè)計(jì)要求,證明本文的設(shè)計(jì)是成功的。

3 結(jié)論

    本文設(shè)計(jì)并實(shí)現(xiàn)了一款GaN HEMT內(nèi)匹配功率放大器,同時(shí)對(duì)幾種匹配電路模型進(jìn)行了介紹,有L型匹配網(wǎng)絡(luò)、T型匹配網(wǎng)絡(luò)、π型匹配網(wǎng)絡(luò),同時(shí)對(duì)常用于寬帶電路設(shè)計(jì)的多節(jié)匹配網(wǎng)絡(luò)以及用史密斯圓圖進(jìn)行匹配的方法進(jìn)行了較為詳細(xì)的說(shuō)明。最終用1個(gè)柵寬為9.6 mm的GaN功率芯,通過(guò)內(nèi)匹配的方式,用史密斯圓圖進(jìn)行了電路設(shè)計(jì),在3.8~4.2 GHz頻段內(nèi),連續(xù)波輸入的條件下實(shí)現(xiàn)了30 W以上的功率輸出,同時(shí)功率的附加效率達(dá)到了48%以上。同時(shí)也顯示了GaN功率器件的寬帶、高效和高功率的工作性能具有廣闊的工程應(yīng)用前景。

參考文獻(xiàn)

[1] 曹澤華.L波段GaN內(nèi)匹配功率放大器研究[D].成都:電子科技大學(xué),2017.

[2] 冷永清.S波段GaN基HEMT內(nèi)匹配平衡功率放大器研究[D].長(zhǎng)沙:湖南大學(xué),2009.

[3] 關(guān)統(tǒng)新,要志宏,趙瑞華,等.基于GaN HEMT的S波段內(nèi)匹配功率放大器設(shè)計(jì)[J].半導(dǎo)體技術(shù),2014,39(1):38-41.

[4] Applied Materials.Semiconductor technologies[Z].Unit States:Applied Materials,2012:1-3.

[5] SAAD P,F(xiàn)AGER C,CAO H,et al.Design of a highly efficient 2-4-GHz octave bandwidth GaN-HEMT power amplifier[J].IEEE Transactions on Microwave Theory & Techniques,2010,58(7):1677-1685.

[6] WU Y T,MKADEM F,BOUMAIZA S.Design of a broadband and highly efficient 45 W GaN power amplifier via simplified real frequency technique[C].Microwave Symposium Digest.IEEE,2010:1090-1093.

[7] 斛彥生,余若祺,銀軍,等.S波段GaN高效率內(nèi)匹配功率放大器的設(shè)計(jì)與實(shí)現(xiàn)[J].通訊世界,2017(12):25-26.

[8] 馬東藝.S波段基于GaN HEMT的寬帶內(nèi)匹配高功率器件的研制[D].上海:復(fù)旦大學(xué),2014.

[9] Reinhold Ludwig.射頻電路設(shè)計(jì)理論及應(yīng)用[M].北京:電子工業(yè)出版社,2002.

[10] BAHL I J.射頻與微波晶體管放大器基礎(chǔ)[M].北京:電子工業(yè)出版社,2013.



作者信息:

張書(shū)源,鐘世昌

(南京電子器件研究所,江蘇 南京210016)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。