人工智能相關(guān)文章

基于卷積神經(jīng)網(wǎng)絡(luò)的織物瑕疵檢測(cè)方法研究

織物瑕疵檢測(cè)是控制織物產(chǎn)品質(zhì)量的重要步驟,傳統(tǒng)的織物瑕疵檢測(cè)方法檢測(cè)效率低,勞動(dòng)強(qiáng)度大。因此,針對(duì)傳統(tǒng)檢測(cè)方法存在的問(wèn)題,提出一種基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的分類算法用于實(shí)現(xiàn)織物瑕疵檢測(cè)。網(wǎng)絡(luò)是在VGG16的基礎(chǔ)上進(jìn)行減枝,通過(guò)優(yōu)化網(wǎng)絡(luò)參數(shù)實(shí)現(xiàn)最優(yōu)結(jié)果。首先,由于織物瑕疵大小差別較大,提出將瑕疵邊緣作為檢測(cè)的目標(biāo),這樣就可以將大尺度圖片分割為64×64的小尺度圖片用于網(wǎng)絡(luò)訓(xùn)練,既提高了網(wǎng)絡(luò)的分類準(zhǔn)確率,又解決了織物瑕疵圖像搜集困難的問(wèn)題。其次,在測(cè)試過(guò)程中,提出對(duì)大尺度圖片進(jìn)行有重疊的分割,然后對(duì)分割后的圖片進(jìn)行分類,根據(jù)每張圖片的輸出標(biāo)簽和位置來(lái)實(shí)現(xiàn)大尺度圖片的瑕疵檢測(cè)。實(shí)驗(yàn)結(jié)果表明,本文所提出的網(wǎng)絡(luò)結(jié)構(gòu)相比于傳統(tǒng)的VGG16和LeNet網(wǎng)絡(luò)結(jié)構(gòu), 具有檢測(cè)速度快、檢測(cè)精度高等優(yōu)勢(shì)。

發(fā)表于:12/16/2020

基于機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)研究進(jìn)展及挑戰(zhàn)

由于惡意軟件的數(shù)量日漸龐大,攻擊手段不斷更新,結(jié)合機(jī)器學(xué)習(xí)技術(shù)是惡意軟件檢測(cè)發(fā)展的一個(gè)新方向。先簡(jiǎn)要介紹惡意軟件檢測(cè)中的靜態(tài)檢測(cè)方法以及動(dòng)態(tài)檢測(cè)方法,總結(jié)基于機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)一般流程,回顧了研究進(jìn)展。通過(guò)使用Ember 2017和Ember 2018數(shù)據(jù)集,分析驗(yàn)證了結(jié)構(gòu)化特征相關(guān)方法,包括隨機(jī)森林(Random Forest,RF)、LightGBM、支持向量機(jī)(Support Vector Machine,SVM)、K-means以及卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)等算法模型;使用收集的2019年樣本集分析驗(yàn)證了序列化特征相關(guān)方法,包括幾種常見(jiàn)的深度學(xué)習(xí)算法模型。計(jì)算模型以在不同測(cè)試集上的準(zhǔn)確率、精確率、召回率以及F1-值作為評(píng)估指標(biāo)。根據(jù)實(shí)驗(yàn)結(jié)果分析討論了各類方法的優(yōu)缺點(diǎn),著重驗(yàn)證分析了樹(shù)模型的泛化能力,表明隨著樣本的不斷演變,模型普遍存在退化問(wèn)題,并指出進(jìn)一步研究方向。

發(fā)表于:12/16/2020

基于雙流卷積神經(jīng)網(wǎng)絡(luò)和生成式對(duì)抗網(wǎng)絡(luò)的行人重識(shí)別算法

近年來(lái),針對(duì)行人重識(shí)別問(wèn)題的深度學(xué)習(xí)技術(shù)研究取得了很大的進(jìn)展。然而,在解決實(shí)際數(shù)據(jù)的特征樣本不平衡問(wèn)題時(shí),效果仍然不理想。為了解決這一問(wèn)題,設(shè)計(jì)了一個(gè)更有效的模型,該模型很好地解決了目標(biāo)的不同姿態(tài)的干擾以及數(shù)據(jù)集中的圖片數(shù)量不足的問(wèn)題。首先,通過(guò)遷移姿態(tài)生成對(duì)抗網(wǎng)絡(luò)生成行人不同姿勢(shì)的圖片,解決姿態(tài)干擾及圖片數(shù)量不足的問(wèn)題。然后利用兩種不同的獨(dú)立卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征,并將其結(jié)合得到綜合特征。最后,利用提取的特征完成行人重識(shí)別。采用姿勢(shì)轉(zhuǎn)換方法對(duì)數(shù)據(jù)集進(jìn)行擴(kuò)展,有效地克服了由目標(biāo)不同姿勢(shì)引起的識(shí)別誤差,識(shí)別錯(cuò)誤率降低了6%。實(shí)驗(yàn)結(jié)果表明,該模型在Market-1501和DukeMTMC-Reid上達(dá)到了更好的識(shí)別準(zhǔn)確度。在DukeMTMC-Reid數(shù)據(jù)集上測(cè)試時(shí),Rank-1準(zhǔn)確度增加到92.10%,mAP 達(dá)到84.60%。

發(fā)表于:12/15/2020