| 混合CNN-SVM的心音信号分类算法的研究 | |
| 所屬分類:技术论文 | |
| 上傳者:wwei | |
| 文檔大小:3674 K | |
| 標(biāo)簽: 卷积神经网络 支持向量机 心音信号识别 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:针对当前心音信号识别算法检测精度不佳问题,提出了一种混合卷积神经网络-支持向量机模型 (CNN-SVM) 的心音信号分类方法。通过PASCAL挑战实验数据,整理出正常与不正常两类心音信号数据库,通过预处理滤波及MFCC、一二阶差分特征提取、PCA降维,输入CNN-SVM模型进行训练。并从准确率、召回率、特异性、精确率和F分数5个方面进行性能评估。为了验证此算法的有效性,将混合CNN-SVM模型与单一SVM、CNN模型分别进行了对比。实验结果表明,该方法能够以较高识别率将两种心音信号区分开,其平均识别准确率接近于99%,相较于单一CNN方法提高了2.48%,同样高于单一SVM算法。 | |
| 現(xiàn)在下載 | |
| VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2