Faster RCNN和LGDF結合的肝包蟲病CT圖像病灶分割
所屬分類:技術論文
上傳者:aetmagazine
文檔大?。?span>710 K
標簽: faster RCNN LGDF 深度學習
所需積分:0分積分不夠怎么辦?
文檔介紹:針對人工閱片工作量大、閱片質量不佳且容易出現漏檢、錯判等問題,將Faster RCNN目標檢測模型應用于肝包蟲病CT圖像的檢測,并對目標檢測模型進行改進:基于圖片分辨率低、病灶大小不同的特點,使用網絡深度更深的殘差網絡(ResNet101)代替原來的VGG16網絡,用以提取更豐富的圖像特征;根據目標檢測模型得出的病灶坐標信息引入LGDF模型進一步對病灶進行分割,從而輔助醫(yī)生更高效的診斷疾病。實驗結果表明,基于ResNet101特征提取網絡的目標檢測模型能夠有效提取目標的特征,檢測準確率相比原始檢測模型提高2.1%,具有較好的檢測精度。同時,將病灶坐標信息引入LGDF模型,相比于原始的LGDF模型更好地完成了對肝包蟲病病灶的分割,Dice系數提高了5%,尤其對多囊型肝包蟲病CT圖像的分割效果較好。
現在下載
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。