《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 基于ARM+FPGA的重構(gòu)控制器設(shè)計
基于ARM+FPGA的重構(gòu)控制器設(shè)計
來源:C114中國通信網(wǎng)
摘要: 可重構(gòu)技術(shù)是指利用可重用的軟硬件資源,根據(jù)不同的應(yīng)用需求,靈活地改變自身體系結(jié)構(gòu)的設(shè)計方法。常規(guī)SRAM工藝的FPGA都可以實現(xiàn)重構(gòu),利用硬件復(fù)用原理,本文設(shè)計的可重構(gòu)控制器采用ARM核微控制器作為主控制器,以FPGA芯片作為協(xié)處理器配合主控制器工作。用戶事先根據(jù)需求設(shè)計出不同的配置方案,并存儲在重構(gòu)控制器內(nèi)部的存儲器中,上電后,重構(gòu)控制器就可以按需求將不同設(shè)計方案分時定位到目標可編程器件內(nèi),同時保持其他部分電路功能正常,實現(xiàn)在系統(tǒng)靈活配置,提高系統(tǒng)工作效率。
關(guān)鍵詞: FPGA 控制器 ARM微處理器 Xilinx
Abstract:
Key words :

        可重構(gòu)技術(shù)是指利用可重用的軟硬件資源,根據(jù)不同的應(yīng)用需求,靈活地改變自身體系結(jié)構(gòu)的設(shè)計方法。常規(guī)SRAM工藝的FPGA都可以實現(xiàn)重構(gòu),利用硬件復(fù)用原理,本文設(shè)計的可重構(gòu)控制器采用ARM核微控制器作為主控制器,以FPGA芯片作為協(xié)處理器配合主控制器工作。用戶事先根據(jù)需求設(shè)計出不同的配置方案,并存儲在重構(gòu)控制器內(nèi)部的存儲器中,上電后,重構(gòu)控制器就可以按需求將不同設(shè)計方案分時定位到目標可編程器件內(nèi),同時保持其他部分電路功能正常,實現(xiàn)在系統(tǒng)靈活配置,提高系統(tǒng)工作效率。
1 SVF格式配置文件
        很多嵌入式系統(tǒng)中都用到了FPGA/CPLD等可編程器件,在這些系統(tǒng)中利用SVF格式配置文件就可以方便地通過微控制器對可編程器件進行重新配置。目前可編程芯片廠商的配套軟件都可以生成可編程器件的SVF格式配置文件,串行矢量格式(SVF)是一種用于說明高層IEEE1149.1(JTAG)總線操作的語法規(guī)范。SVF由Texas Instruments開發(fā),并已成為數(shù)據(jù)交換標準而被Teradyne,Tektronix等JTAG測試設(shè)備及軟件制造商采用。XilinxFPGA以及配置PROM可通過JTAG接口中TAP控制器接收SVF格式的編程指令。由于SVF文件由ASCII語句構(gòu)成,它要求較大的存儲空間,并且存儲效率很低,無法勝任嵌入式應(yīng)用。為了在嵌入式系統(tǒng)中充分利用其有限的存儲空間,并不直接利用SVF文件對可編程器件進行在系統(tǒng)編程,而是將SVF文件轉(zhuǎn)換成另一種存儲效率比較高的二進制格式的文件,把它存儲在數(shù)據(jù)存儲器中。Xilinx公司提供用于創(chuàng)建器件編程文件的iMPACT工具,該工具隨附于標準Xilinx ISETM軟件內(nèi)。iMPACT軟件能自動讀取標準的BIT/MCS器件編程文件,并將其轉(zhuǎn)換為緊湊的二進制XSVF格式。
        本設(shè)計是基于“ARM處理器+FPGA”結(jié)構(gòu)的重構(gòu)控制器,重構(gòu)控制器中的FPGA能夠根據(jù)ARM處理器傳送來的命令,對目標可編程器件JTAG接口進行控制,并負責解譯XSVF格式的配置文件信息,生成xilinx器件所用的編程指令、數(shù)據(jù)和控制信號(TMS,TDI,TCK序列)向目標可編程器件的JTAG TAP控制器提供所需的激勵,從而執(zhí)行最初在XSVF文件內(nèi)指定的編程和(可選的)測試操作。使目標可編程器件內(nèi)的TAP狀態(tài)機進行狀態(tài)轉(zhuǎn)換,將指令和數(shù)據(jù)掃描到FPGA內(nèi)部邊界掃描電路指令寄存器和數(shù)據(jù)寄存器中。完成一次目標可編程器件配置,實現(xiàn)用戶此時所要求功能,在下一時段,可根據(jù)用戶新的要求,調(diào)用重構(gòu)控制器內(nèi)部存儲器中不同方案在系統(tǒng)重新配置目標可編程器件,這樣就實現(xiàn)了硬件復(fù)用,減少成本。
2邊界掃描(JTAG)原理
2.1 JTAG接口基本結(jié)構(gòu)

        JTAG(Joint Test,Action Group,聯(lián)合測試行動小組)是一種國際標準測試協(xié)議(IEEE1149.1兼容),其工作原理是在器件內(nèi)部定義一個測試訪問端口(TestAccess Port,TAP),通過專用的JTAG測試工具對內(nèi)部節(jié)點進行測試和調(diào)試。TAP是一個通用的端口,外部控制器通過TAP可以訪問芯片提供的所有數(shù)據(jù)寄存器和指令寄存器。現(xiàn)在JTAG接口還常用于芯片的在線配置(In-System Programmable,ISP),對PLD,F(xiàn)LASH等器件進行配置。JTAG允許多個器件通過JTAG接口串聯(lián)在一起,形成一個JTAG鏈,實現(xiàn)對各個器件分別測試和在系統(tǒng)配置。
        JTAG主要由三部分構(gòu)成:TAP控制器、指令寄存器和數(shù)據(jù)寄存器,如圖1所示。標準的JTAG接口有四組輸出線:TMS,TCK,TDI,TDO,以及1個可選信號TRST。

                          

       TCK:JTAG測試時鐘輸入,當TCK保持在零狀態(tài)時,測試邏輯狀態(tài)應(yīng)保持不變;
       TMS:測試模式選擇,控制JTAG狀態(tài),如選擇寄存器、數(shù)據(jù)加載、測試結(jié)果輸出等,出現(xiàn)在TMS的信號在TCK的上升沿由測試邏輯采樣進入TAP控制器;
       TDI:測試數(shù)據(jù)輸入,測試數(shù)據(jù)在TCK的上升沿采樣進入移位寄存器(SR);
      TDO:測試數(shù)據(jù)輸出,測試結(jié)果在TCK的下降沿從移位寄存器(SR)移出,輸出數(shù)據(jù)與輸入到TDI的數(shù)據(jù)應(yīng)不出現(xiàn)倒置;
      TRST:可選復(fù)位信號,低電平有效。
       Xilinx器件接受使用JTAG TAP的編程指令和測試指令。在IEEE 1149.1的標準中,用于CPLD,F(xiàn)PGA以及配置PROM的常見指令有:旁路(BYPASS)指令,通過用1 b長的BYPASS寄存器將TDI與TDO直接連接,繞過(即旁路)邊界掃描鏈中的某個器件;EXTEST指令,將器件I/O引腳與內(nèi)部器件電路分離,以實現(xiàn)器件間的連接測試,它通過器件引腳應(yīng)用測試值并捕獲結(jié)果;IDCODE指令,返回用于定義部件類型、制造商和版本編號的32位硬件級別的識別碼;HIGHZ指令,使所有器件引腳懸置為高阻抗狀態(tài);CFG_IN/CFG_OUT指令,允許訪問配置和讀回所用的配置總線;JSTART,當啟動時鐘= JTAGCLK時為啟動時序提供時鐘。
2.2 Tap狀態(tài)機時序介紹
       JTAG邊界掃描測試由測試訪問端口的TAP控制器管理。TMS,TRST和TCK引腳管理TAP控制器的操作,TDI和TDO位數(shù)據(jù)寄存器提供串行通道。TDI也為指令寄存器提供數(shù)據(jù),然后為數(shù)據(jù)寄存器產(chǎn)生控制邏輯。對于選擇寄存器、裝載數(shù)據(jù)、檢測和將結(jié)果移出的控制信號,由測試時鐘(TCK)和測試模式(TMS)選擇兩個信號控制。測試復(fù)位信號(TRST,一般以低電平有效)一般作為可選的第五個端口信號。
       如圖2所示,所有基于JTAG的操作都必須同步于JTAG時鐘信號TCK。所有測試邏輯的變化(例如指令寄存器,數(shù)據(jù)寄存器等)必須出現(xiàn)在TCK的上升沿或下降沿。關(guān)鍵時序關(guān)系是:TMS和TDI采樣于TCK的上升邊沿,一個新的TDO值將于TCK下降邊沿后出現(xiàn),因此一般情況下JTAG的時鐘不會太高。
                    
       圖3表示了IEEE 1149.1標準定義的TAP控制器的狀態(tài)圖,TAP控制器是16個狀態(tài)的有限狀態(tài)機,為JTAG接口提供控制邏輯。TAP狀態(tài)轉(zhuǎn)移如圖3所示,箭頭上的1或0,表示TMS在TCK上升沿的值(高電平TMS=1,低電平TMS=0),同步時鐘TCK上升沿時刻TMS的狀態(tài)決定狀態(tài)轉(zhuǎn)移過程。對于TDI端輸入到器件的配置數(shù)據(jù)有兩個狀態(tài)變化路徑:一個用于移指令到指令寄存器中,另一個用于移數(shù)據(jù)到有效的數(shù)據(jù)寄存器,該寄存器的值由當前執(zhí)行的JTAG指令決定。當TAP控制器處于指令寄存器移位(SHIFT-IR)狀態(tài)時,對于每一個TCK的上升沿,連接在TDI和TDO之間的指令寄存器組中的移位寄存器向串行輸出方向移一位。
                       
      當TMS保持為高電平時,在TCK的上升沿TAP控制器進入到“EXIT1-IR”狀態(tài);當TMS為低電平時,TAP控制器保持在“指令寄存器移位”狀態(tài)。
3重構(gòu)控制器設(shè)計
3.1硬件系統(tǒng)組成
       其主要功能是控制按照用戶不同需求控制調(diào)用不同的方案配置目標可編程器件。它主要包括ARM處理器、FPGA、FLASH存儲器和對外總線接口,各功能部件主要功能如下:
      (1)ARM處理器選用AT91FR40162S,其主要功能是控制模擬JTAG接口的FPGA讀取FLASH存儲器中的重構(gòu)方案,實現(xiàn)在系統(tǒng)配置;
      (2)FPGA協(xié)處理器選用Xilinx公司SPARTEN3AN系列的XC3S700AN-FGG484,是基于非易失性存儲的FPGA,自身帶有PROM,它作為外部總線和ARM控制器之間的雙端口,主要功能是模擬 JTAG接口實現(xiàn)TAP控制器時序,完成配置方案數(shù)據(jù)的并串轉(zhuǎn)換并輸出至外部總線;
      (3)FLASH存儲器容量為32M×16 b,用于處理器的上電引導、存放多種重構(gòu)配置方案。由于要求的存儲容量較大,采用SPANSION公司S29GL512P(32M×16 b)的存儲空間,訪問速度為110 ns,可以達到25 ns快速頁存取和相應(yīng)的90 ns隨機存取時間,F(xiàn)BGA封裝;
      (4)外部總線接口,可采用1路RS 232驅(qū)動接收器,實現(xiàn)和外部通信的接口;
      (5)測試線TCK,TMS,TDI和TDO,是重構(gòu)控制器向目標可編程器件提供所需的JTAG TAP激勵,分別控制目標多個FPGA的重構(gòu)配置和反饋重構(gòu)信息。
3.2重構(gòu)控制器工作原理
       ARM執(zhí)行的初始化工作包括程序更新加載運行,F(xiàn)PGA參數(shù)設(shè)定等;FPGA設(shè)定內(nèi)部寄存器和邏輯狀態(tài)的初始值、內(nèi)部緩沖區(qū)數(shù)據(jù)清零等。
      重構(gòu)控制器示意圖如圖4所示。圖中ARM處理器一方面通過ARM總線讀取外部FLASH中的配置方案,對其進行并串轉(zhuǎn)化操作,將其存儲到FLASH存儲器中;另一方面重構(gòu)控制器中模擬TAP控制器的FPGA,從ARM內(nèi)置的FLASH存儲器中讀取配置文件,并執(zhí)行ARM處理器發(fā)出的指令解譯該文件,重構(gòu)控制器解釋二進制文件方法如下:在ARM處理器的控制下,從裝載配置文件的FLASH中讀出一個字節(jié),判斷是哪條JTAG指令,然后根據(jù)指令的格式作具體的處理,產(chǎn)生TCK,TMS,TDI和TDO信號,作為目標可編程器件的JTAG接口激勵,與目標可編程器件的JTAG口串聯(lián)成菊花鏈,在ARM處理器的控制下,對目標可編程器件進行在系統(tǒng)編程。被重構(gòu)的FPGA由支持局部動態(tài)重構(gòu)的Xilinx公司的Virtex-4系列FPGA來實現(xiàn)。
4  結(jié)  語
       本文介紹的重構(gòu)控制器既具有ARM微控制器所擁有的高速處理器核、體積小、集成度高、運算速度快、存儲器容量大、功耗低等特點,又具有FPGA 強大的并行計算能力和方便靈活的動態(tài)可重構(gòu)性,使硬件信息(可編程器件的配置信息)像軟件程序一樣被動態(tài)調(diào)用或修改。對于特定的目標FPGA芯片,在一定控制邏輯的驅(qū)動下,對芯片的全部或部分邏輯資源重新進行動態(tài)配置,從而實現(xiàn)硬件的時分復(fù)用,靈活快速地改變系統(tǒng)功能,節(jié)省邏輯資源,滿足大規(guī)模應(yīng)用需求。
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。