基于AP3031的高能效LED背光驅(qū)動(dòng)電源方案
電子工程專輯
摘要: 隨著電力電子技術(shù)的發(fā)展,越來越多的便攜設(shè)備開始使用中小尺寸(7`~10`)的液晶面板作為顯示輸出裝置。由于便攜設(shè)備電池容量有限,低效率的背光電源方案會(huì)嚴(yán)重縮短設(shè)備的工作時(shí)間,因此如何提高背光驅(qū)動(dòng)的效率顯得至關(guān)重要。與此同時(shí),隨著市場(chǎng)競(jìng)爭(zhēng)日趨激烈,生產(chǎn)成本也成為考量驅(qū)動(dòng)方案的一個(gè)重要指標(biāo)。
Abstract:
Key words :
隨著電力電子技術(shù)的發(fā)展,越來越多的便攜設(shè)備開始使用中小尺寸(7`~10`)的液晶面板作為顯示輸出裝置。由于便攜設(shè)備電池容量有限,低效率的背光電源方案會(huì)嚴(yán)重縮短設(shè)備的工作時(shí)間,因此如何提高背光驅(qū)動(dòng)的效率顯得至關(guān)重要。與此同時(shí),隨著市場(chǎng)競(jìng)爭(zhēng)日趨激烈,生產(chǎn)成本也成為考量驅(qū)動(dòng)方案的一個(gè)重要指標(biāo)。
目前業(yè)界通常使用雙級(jí)供電的電源方案為L(zhǎng)ED提供背光驅(qū)動(dòng),即從輸入電源通過一級(jí)降壓電路將電壓降至5V,然后再通過一級(jí)升壓電路為背光LED提供合適的驅(qū)動(dòng)電壓。這種方案的缺點(diǎn)是使用了兩級(jí)供電,效率低而且成本偏高。
AP3031是BCD公司基于Poly emitter 工藝研制的新一代背光驅(qū)動(dòng)IC,其特點(diǎn)是將芯片供電電壓的最大值由業(yè)界常見的6V提高至20V?;贏P3031耐高壓的特點(diǎn),本文改進(jìn)了背光驅(qū)動(dòng)的方案,期望能夠提高變換器的效率,同時(shí)降低方案成本。
高輸入電壓方案
圖1 升壓型背光驅(qū)動(dòng)
圖1是常見的升壓型背光驅(qū)動(dòng),其中輸入電壓Vin=5V,由電池電壓經(jīng)過一級(jí)降壓電路得到。輸出電壓約為10V,驅(qū)動(dòng)3x13的LED矩陣。使用示波器測(cè)量升壓電路中各個(gè)功率器件的電壓電流波形,可以得到各功率器件的損耗功率,升壓電路的功率損耗分布如圖2所示。
圖1是常見的升壓型背光驅(qū)動(dòng),其中輸入電壓Vin=5V,由電池電壓經(jīng)過一級(jí)降壓電路得到。輸出電壓約為10V,驅(qū)動(dòng)3x13的LED矩陣。使用示波器測(cè)量升壓電路中各個(gè)功率器件的電壓電流波形,可以得到各功率器件的損耗功率,升壓電路的功率損耗分布如圖2所示。
圖2 升壓型背光驅(qū)動(dòng)電路功耗分布圖
由圖2可以看出,導(dǎo)通損耗占了變換器損耗的最大部分,而導(dǎo)通損耗是電流流過功率管(圖1中的Q和D)時(shí)產(chǎn)生的損耗。以Q管為例,Q管上的電壓電流波形如圖3所示。
圖3 電感電流波形圖
所以Q管的導(dǎo)通損耗PQcon-loss為:
由式1~2可以看出,在輸出功率Pout一定的情況下,輸入電壓與導(dǎo)通損耗成反比,因此選擇較高的輸入電壓可以有效降低功率開關(guān)管的導(dǎo)通損耗,提高變換器效率。
圖4 電感電流波形圖
實(shí)驗(yàn)測(cè)試結(jié)果如圖4所示,變換器的效率隨著輸入電壓的增加而增加。最高可至93%,比5V輸入時(shí)提高8%。需要注意的是,此方案中的供電電壓必需要小于輸出電壓,當(dāng)供電電壓高于輸出電壓(如使用三芯鋰電池直接供電),可采用下面的單級(jí)Sepic變換器方案。
圖5 sepic電路圖
單級(jí)Sepic變換器方案
Sepic電路既可以實(shí)現(xiàn)升壓,也可以實(shí)現(xiàn)降壓,所以非常適用于輸入電壓變化較大的便攜式系統(tǒng)。同時(shí),因?yàn)锳P3031高達(dá)20V的耐壓值,使得系統(tǒng)可以使用一級(jí)Sepic電路直接進(jìn)行背光驅(qū)動(dòng)。圖5為單級(jí)Sepic背光驅(qū)動(dòng)電路圖,其工作原理如圖6所示。
圖6 Sepic工作原理圖
圖6中Sepic電路工作可以分為兩個(gè)階段:a. Q1管導(dǎo)通階段,電流流過L1并且線性增加,C1電容通過L2放電,L2電流也線性增加;b. Q1管關(guān)斷階段,電流流過L1向C1進(jìn)行充電,電流線性減小,同時(shí)L2向負(fù)載放電,電流線性減小。具體各點(diǎn)波形如圖7所示。
圖7 Sepic電路圖
結(jié)合各點(diǎn)波形對(duì)變換器中的兩個(gè)電感L1和L2寫出伏秒積平衡公式為:
由式3可以求出:
由式4可以看出Sepic電路既能升壓,又能降壓,能夠適應(yīng)大范圍的輸入電壓的變化。與傳統(tǒng)兩級(jí)轉(zhuǎn)換(Buck to Boost)電路結(jié)構(gòu)相比, Speic電路省掉一級(jí)功率轉(zhuǎn)換電路,可以顯著提高背光效率,實(shí)驗(yàn)結(jié)果如圖8所示。
由式3可以求出:
由式4可以看出Sepic電路既能升壓,又能降壓,能夠適應(yīng)大范圍的輸入電壓的變化。與傳統(tǒng)兩級(jí)轉(zhuǎn)換(Buck to Boost)電路結(jié)構(gòu)相比, Speic電路省掉一級(jí)功率轉(zhuǎn)換電路,可以顯著提高背光效率,實(shí)驗(yàn)結(jié)果如圖8所示。
圖8 Sepic電路效率圖
背光電源方案的選擇
依前文所述,系統(tǒng)背光電源方案的選擇,主要取決于系統(tǒng)的供電結(jié)構(gòu):
* 對(duì)于采用5V DC供電的系統(tǒng)(如數(shù)碼相框等),可以使用AP3031 Boost電路對(duì)背光進(jìn)行供電。
* 對(duì)于采用雙芯鋰電池供電的系統(tǒng)(如便攜式DVD等),也可以直接使用AP3031
Boost電路對(duì)背光進(jìn)行供電,這樣可以減小前級(jí)Buck電路中功率器件的過流能力需求,降低器件成本。
* 對(duì)于采用三芯或三芯以上鋰電池供電的系統(tǒng)(如上網(wǎng)本等),可以采用AP3031
Sepic電路對(duì)背光進(jìn)行供電,這樣可以減少一級(jí)Buck功率變換電路,節(jié)約成本,提高系統(tǒng)可靠性。
本文小結(jié)
從本文可以看出,使用BCD公司的AP3031,可以設(shè)計(jì)出更高效率的LED背光驅(qū)動(dòng)電源,同時(shí)還可以顯著的降低背光電源的成本。這些方案技術(shù)成熟,優(yōu)勢(shì)明顯,具有廣闊的應(yīng)用前景。
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。