《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 基于單片機的EV動力蓄電池組電量計量系
基于單片機的EV動力蓄電池組電量計量系
北京交通大學電子信息工程學院
周維保 路勇
摘要: 摘要:本文論述了用AT89C51單片機控制的蓄電池組管理及電量計量系統(tǒng)的設計和實現(xiàn)。硬件部分采用了積木式結構,使檢測電路擴展更加靈活。針對蓄電池充放電過程中的非線性和復雜性,在檢測電路采用了光電隔離器件。
Abstract:
Key words :

摘 要:本文論述了用AT89C51單片機" title="單片機">單片機控制的蓄電池組管理及電量計量系統(tǒng)的設計和實現(xiàn)。硬件部分采用了積木式結構,使檢測電路擴展更加靈活。針對蓄電池充 放電過程中的非線性和復雜性,在檢測電路采用了光電隔離器件。在軟件的設計中,給出了計算電量的新算法,克服了單純采用安時法對固定初始放電狀態(tài)的要求, 實現(xiàn)了實時檢測。針對系統(tǒng)中可能存在的干擾,采用了加看門狗電路、設置軟件陷阱等設計。
關鍵詞:電動汽車;蓄電池;電量計量

引言
隨著汽車工業(yè)的迅速發(fā)展,解決汽車尾氣排放所帶來的大氣污染問題的較好方案是發(fā)展無空氣污染的交通工具,電動汽車隨之應運而生。以蓄電池作為動力源的電動汽車,無論從技術上還是經(jīng)濟上都是最可行的。
電動汽車用的動力蓄電池通常由多節(jié)單體電池串聯(lián)或者并聯(lián)構成,一般串聯(lián)的單體電池數(shù)可達到十至幾十個,單體電池電壓一般是12V,總電壓在100V以上, 總?cè)萘吭?00Ah以上。本文所闡述的蓄電池性能檢測系統(tǒng)在結構設計上可以根據(jù)需要增加或減少被檢測電池的數(shù)量,具有較高的靈活性,單片機控制使精度可達 1%,利用改進的開路電壓法進行數(shù)據(jù)運算,進一步提高了精度。
由于鉛酸蓄電池容量有限并具有腐蝕性,鎳鎘蓄電池中鎘是有污染的重金屬,而鎳氫電池的容量、充放電特性都滿足要求,并且環(huán)保,因此鎳氫蓄電池是未來電動汽車用蓄電池的發(fā)展方向。本文的電動車蓄電池組管理及電量計量系統(tǒng)就是針對鎳氫蓄電池而設計的。

鎳氫電池的充放電特性
鎳氫電池由鎳氫化合物正電極、儲氫合金負電極以及堿性電解液(比如30%的氫氧化鉀溶液)組成,充、放電時的電化學反應式如下:
電池正極:
Ni(OH)2+OH-→NiOOH+H2O+e
電池負極:M+H2O+e→MH+OH-
電池總反應:
M+Ni(OH)2→NiOOH+MH
在以上各方程中,(正方向)正向化學反應方向為蓄電池充電時的化學反應方向,(反方向)反向化學反應方向為蓄電池放電時的化學反應方向。M為儲氫合金;MH為吸附了氫原子的儲氫合金。
在鎳氫電池恒流充電的起始階段,電池端電壓迅速上升,而在電池電量接近充滿時又稍微有些下降。鎳氫電池充電內(nèi)阻較小,因而具有較高的充電效率。充滿電的鎳 氫電池,其端電壓在恒流放電起始階段下降緩慢,只是在電池電量接近放盡的時候,電池端電壓才開始大幅度地下降。在放電過程中,鎳氫電池內(nèi)阻幾乎維持在一定 值附近,變化很小,只是在放電接近完畢時,電池內(nèi)阻才急劇增大,且時間很短,說明鎳氫電池具有較高的放電效率。

系統(tǒng)概述
系統(tǒng)簡介
本系統(tǒng)具有蓄電池巡回檢測功能,可在蓄電池充、放電過程中在線檢測蓄電池端電壓、充放電電流和蓄電池溫度,能根據(jù)檢測到的電流計算剩余安時數(shù),并按要求顯示出來,另外,本系統(tǒng)還具有故障預測功能。其結構框圖如圖1所示。
主要技術參數(shù)
本系統(tǒng)擬達到的技術指標如下:
(1)要求1s采集并處理一個數(shù)據(jù)。
(2) 最多可檢測45路12V的蓄電池單體電壓,1路電流和2路溫度等參數(shù)。電壓測量精度1%,溫度測量精度5%,電流測量精度1%。
(3) 系統(tǒng)的工作環(huán)境溫度為0℃~40℃。
4) 系統(tǒng)顯示采用串行口通信,單片機電路有數(shù)據(jù)掉電保護、電源檢測等功能。

系統(tǒng)的硬件結構
本系統(tǒng)由三個大的模塊構成:主電路模塊、電壓采集擴展模塊和顯示模塊。
主電路模塊是系統(tǒng)的核心部分,其中包括由單片機小系統(tǒng)、A/D轉(zhuǎn)換器、信號調(diào)理電路、邏輯控制電路、電源電壓監(jiān)視電路和EEPROM電路構成的信號處理和 存儲電路,集成在主電路上的20路電壓采集子電路、主電路模塊以及主電路模塊和另外兩個模塊的接口,具體框圖如圖2所示。
電壓采集擴展模塊由25路電壓采集子電路構成,集成有電池電壓輸入插座。電路板做成插板形式,需要擴展的時候即可以插到主電路上的插槽上。
顯示模塊由7個數(shù)碼管顯示器、三個按鍵及兩個報警電路構成。
幾種常用的電壓數(shù)據(jù)采集電路方案的比較如表1所示。由于電池經(jīng)過逆變器或者斬波器為電機供電,電磁干擾比較嚴重,因此應采用抗干擾能力強的數(shù)據(jù)采集電路。 利用光電耦合器件組成的電壓數(shù)據(jù)采集電路方案費用低、體積小、精度滿足系統(tǒng)要求并具有很強的抗干擾能力,因此,本系統(tǒng)采用了這種電壓數(shù)據(jù)采集電路方案,原 理框圖如圖3所示。
在電流檢測電路中采用了LEM公司的霍爾電流傳感器LT208-S7;溫度采集電路中采用的是集成溫度傳感器LM35;采樣保持和A/D轉(zhuǎn)換電路由快速逐次比較的12位A/D轉(zhuǎn)換器AD1674構成。

系統(tǒng)的軟件設計
  本系統(tǒng)采用模塊化的程序設計方案,各模塊子程序之間相對獨立,整個系統(tǒng)軟件結構清晰、便于擴展。這些子程序包括:系統(tǒng)初始化子程序、A/D轉(zhuǎn)換子程序、濾波及運算子程序、LED顯示子程序和外部中斷子程序。主程序的流程圖如圖4所示。
針對存在的干擾,可以采用軟件方法實現(xiàn)數(shù)字濾波,以提高信號的可靠性,減少虛假信息的影響。
  針對電量計量的算法,目前國際上大致有兩種方法:(1)將測量開路電壓、負載電壓、內(nèi)阻、電量中的幾種方法結合起來,再對溫度、老化等因素進行補償,如內(nèi) 阻-安時法,Peukert-安時法;(2)采用更為復雜的模型,如TNO模型、Shepard模型和Martin模型的組合模型。這兩類方法各有利弊: 前者方法簡單,計算量少,對硬件要求相對較低,但精度差一些;后者精度高些,但方法復雜,計算量大,對硬件要求較高。
  本系統(tǒng)采用的算法是一種把開路電壓法、安時法和Peukert方程有機地結合起來的算法。使用開路電壓法,是考慮到開路電壓與初始電量有一個明確的關系, 可以通過實測來確定;而安時法用來計算已用電量比較準確,而且適用于充電和放電兩種情況。這種方法比復雜模型的運算量少得多,對于硬件特別是CPU的要求 不很高,便于實時完成。
 開機時,根據(jù)開路電壓U0來確定初始電量CtI:,其中a,b是常量。每秒進行一次采樣,獲取電壓、電流、溫度,用積分法計算已用電量Cu:。初始電量CtI減去Cu就是剩余電量:Cr(t)=CtI-Cu(t)。
 此算法有一個前提條件,就是開機前電池須已經(jīng)靜置一段時間,測量結果才較準確。
 剩余電量受到諸多因素的影響,主要有放電電流對電池容量的影響,以及溫度、循環(huán)使用次數(shù)對容量的影響,都需要定量地加以補償或修正。

提高系統(tǒng)可靠性的措施
(1) 軟件抗干擾措施。軟件抗干擾是以犧牲少量的運行速度和程序空間來達到抗干擾目的的方法。本系統(tǒng)中采用了指令冗余、設置軟件陷阱以及數(shù)據(jù)冗余技術等軟件抗干擾措施。
(2) 硬件抗干擾措施。輸入通道采用了光電耦合器件使蓄電池電壓的變化引起的干擾較小,同時在信號處理電路中構造了二階低通有源濾波器,可以濾出一部分干擾波。單片機連有一片電源監(jiān)視芯片WATCHDOG,在監(jiān)視電源電壓的同時,還可以防止程序跑飛或者進入死循環(huán)。
(3) 數(shù)據(jù)指針的妥善處理。當前數(shù)據(jù)存放的地址(數(shù)據(jù)指針)是系統(tǒng)中非常重要的信息,指針丟失或錯誤將導致數(shù)據(jù)的丟失和誤讀。為了保證指針的正確,本設計中采用 多指針和嚴格校驗策略:即存放多個指針,在每次存儲指針時進行嚴格校驗,而當多次寫入出錯時,封鎖此處RAM;在每次應用之前,隨機讀出其中幾個指針,采 取表決的辦法決定正確值,若表決沒有形成多數(shù),則讀取全部指針再次表決,若仍未成功,則給出顯示,同時系統(tǒng)重新初始化。

結語
  本文完整地分析和探討了蓄電池組管理及電量計量系統(tǒng)的設計和實現(xiàn)。系統(tǒng)以ATMEL單片機為核心,充分開發(fā)和利用了單片機的I/O資源。系統(tǒng)的總體設計采 用積木式結構,便于測量路數(shù)的擴展。本系統(tǒng)能夠較為準確地計算剩余電量,并為進一步的研究工作提供了一個實驗平臺,能夠適應將來可能使用的各種計算方法。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。