《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 如何改善開(kāi)關(guān)電流電路誤差
如何改善開(kāi)關(guān)電流電路誤差
摘要: 開(kāi)關(guān)電流技術(shù)是一種新的模擬信號(hào)采樣、保持、處理技術(shù)。它具有電流模電路的特有優(yōu)點(diǎn),如速度快,適合于低電壓工作等。與傳統(tǒng)的開(kāi)關(guān)電容技術(shù)相比,開(kāi)關(guān)電流技術(shù)不需要線性電容和高性能的運(yùn)算放大器,整個(gè)電路由晶體管組成,因此可與標(biāo)準(zhǔn)的數(shù)字CMOS工藝兼容。針對(duì)開(kāi)關(guān)電流電路中的時(shí)鐘饋通誤差和傳輸誤差進(jìn)行詳細(xì)分析,并提出了解決辦法。
Abstract:
Key words :

     開(kāi)關(guān)電流技術(shù)是一種新的模擬信號(hào)采樣、保持、處理技術(shù)。它具有電流模電路的特有優(yōu)點(diǎn),如速度快,適合于低電壓工作等。與傳統(tǒng)的開(kāi)關(guān)電容技術(shù)相比,開(kāi)關(guān)電流技術(shù)不需要線性電容和高性能的運(yùn)算放大器,整個(gè)電路由晶體管組成,因此可與標(biāo)準(zhǔn)的數(shù)字CMOS工藝兼容。針對(duì)開(kāi)關(guān)電流電路中的時(shí)鐘饋通誤差和傳輸誤差進(jìn)行詳細(xì)分析,并提出了解決辦法。

  1 時(shí)鐘饋通誤差分析

  時(shí)鐘饋通誤差是一個(gè)復(fù)雜的物理現(xiàn)象,在這里以第二代開(kāi)關(guān)電流存儲(chǔ)單元為例進(jìn)行分析。

  圖1為存儲(chǔ)單元,圖2為開(kāi)關(guān)斷開(kāi)時(shí)的電荷注入示意圖。

  對(duì)圖1所示的存儲(chǔ)單元,Ms的溝道電荷可以近似地描述為:

  其中:Cax是柵氧化層單位面積電容;wseff和Lseff分別是Ms的有效溝道寬度和長(zhǎng)度;Vgs是Ms的柵一源電壓;VT是Ms的閾值電壓,由式(2)給出:

  式中:2 |φF|是強(qiáng)反型層表面勢(shì)壘;r是體閾值參數(shù);VT0是Vgs=0時(shí)的閾值電壓。

  一般情況下,1 V

  將式(3)代入式(1),得到注入存儲(chǔ)電容的溝道電荷為:

  其中:aq表示溝道電荷注入存儲(chǔ)電容的分配系數(shù),典型值為:aq=1/2。由柵極擴(kuò)散覆蓋電容Co1,注入存儲(chǔ)電容的電荷為:

  根據(jù)式(4)和式(5)司得整個(gè)注入電荷的總量為:

     存儲(chǔ)管柵—源電壓的誤差為:


假設(shè)晶體管工作飽和區(qū),則:

由于:


 

  式中:mi=ii/j,稱為調(diào)制指數(shù)。將式(9)代入式(8),得:

  2 傳輸誤差分析

  開(kāi)關(guān)電流電路屬于電流模式電路,其基本結(jié)構(gòu)的等效電路如圖3所示。

  從圖3可以看出,上一級(jí)電路的輸出電阻與下一級(jí)電路的輸入電阻并聯(lián)。設(shè)上一級(jí)電路的輸出電流為Iout,輸出電阻為Rout,下一級(jí)電路的輸入電流為Iin,輸入電阻為Rin。,則下一級(jí)電路的輸入電流為:

  從式(12)可看出,增大輸出電阻或減小輸入電阻都可以減小傳輸誤差。

  3 誤差的改善方法

  (1)時(shí)鐘饋通誤差的改善。改善時(shí)鐘饋通誤差可采用S2I電路。圖4給出S2I存儲(chǔ)單元的電路和時(shí)序。它的工作原理為:在φ1a相,Mf的柵極與基準(zhǔn)電壓Vref相連,此時(shí)Mf為Mc提供偏置電流JoMc中存儲(chǔ)的電流為ic=J+ii。當(dāng)φ1a由高電平跳變?yōu)榈碗娖綍r(shí),由于時(shí)鐘饋通效應(yīng)等因素造成Mc單元存儲(chǔ)的電流中含有一個(gè)電流誤差值,假設(shè)它為△ii。,則Mc中存儲(chǔ)的電流為ic=J+ii+△ii。在φ1b相期間,細(xì)存儲(chǔ)管Mf對(duì)誤差電流進(jìn)行取樣,由于輸入電流仍然保持著輸入狀態(tài),所以Mf中存儲(chǔ)的電流為If=J+△ii。當(dāng)φ1b由高電平跳變?yōu)榈碗娖綍r(shí),考慮到△ii。

  (2)傳輸誤差的改善。從前面的分析知,增大輸出電阻或減小輸入電阻都可以減小傳輸誤差。下面介紹一種調(diào)整型共源共柵結(jié)構(gòu)電路,見(jiàn)圖5。

  由圖5可計(jì)算出輸出電阻為:

  與圖1中第二代基本存儲(chǔ)單元相比,輸出電阻增大

  結(jié)合S2I電路與調(diào)整型共源共柵結(jié)構(gòu)電路的優(yōu)點(diǎn),構(gòu)造調(diào)整型共源共柵結(jié)構(gòu)s2I存儲(chǔ)單元,見(jiàn)圖6。


 

  4 仿真及結(jié)果

  采用0.5 pm標(biāo)準(zhǔn)數(shù)字CMOS工藝對(duì)圖6電路仿真,仿真參數(shù)如表1所示:

  所有NMOS襯底接地,所有PMOS襯底接電源。所有開(kāi)關(guān)管寬長(zhǎng)比均為0.5/μm/0.5 μm。輸入信號(hào)為振幅50μA,頻率200 kHz的正弦信號(hào),時(shí)鐘頻率5 MHz,V ref一2.4 V,VDD=5 V。表1中給出了主要晶體管仿真參數(shù)。HSpice仿真結(jié)果見(jiàn)圖7(a)。對(duì)圖1中第二代基本存儲(chǔ)單元仿真結(jié)果見(jiàn)圖7(b)。

  從圖7中可以看出,調(diào)整型共源共柵結(jié)構(gòu)S2I電路大大提高了精度。圖8(a)是圖7的放大圖,圖8(b)是Matlab中的理想波形。從圖8(a)可以看出,在A點(diǎn)時(shí),輸出開(kāi)關(guān)斷開(kāi),輸入開(kāi)關(guān)閉合,輸出電流變?yōu)榱?。在AB區(qū)間內(nèi),輸入信號(hào)對(duì)存儲(chǔ)管的寄生電容充電。在B點(diǎn),輸出開(kāi)關(guān)閉合,輸入開(kāi)關(guān)斷開(kāi),輸出電流為B點(diǎn)的電流值,半個(gè)時(shí)鐘周期后,在C點(diǎn),輸出開(kāi)關(guān)斷開(kāi),輸入開(kāi)關(guān)閉合,繼續(xù)重復(fù)上一周期對(duì)輸入電流的采樣一保持。整個(gè)電路全由MOS管構(gòu)成,依靠晶體管的柵極寄生電容對(duì)輸入信號(hào)采樣一保持,所以可以與標(biāo)準(zhǔn)數(shù)字CMOS工藝兼容,與數(shù)字電路集成在1塊芯片上。與Matlab中的理想波形對(duì)比后可以看出此電路的性能相當(dāng)精確。

  5 結(jié) 語(yǔ)

  與開(kāi)關(guān)電容電路相比,開(kāi)關(guān)電流電路不需要線性浮置電容,能夠與標(biāo)準(zhǔn)數(shù)字CMOS工藝兼容。但是由于誤差的存在,至今無(wú)法完全取代開(kāi)關(guān)電容電路。這里分析了開(kāi)關(guān)電流電路中的時(shí)鐘饋通誤差與傳輸誤差,并提出了解決辦法,從仿真結(jié)果可以看出改進(jìn)后的電路性能大大提高,精確完成了對(duì)輸人信號(hào)的采樣一保持。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。