摘? 要: 提出了一種與接線無關(guān)的三相功率因數(shù)" title="功率因數(shù)">功率因數(shù)檢測方法" title="檢測方法">檢測方法,詳細(xì)論述了該方法的工作原理,給出了信號(hào)獲取的硬件實(shí)現(xiàn)方案。該方法已經(jīng)在功率因數(shù)控制器中得到了成功的應(yīng)用。
關(guān)鍵詞: 功率因數(shù)? 接線無關(guān)? 檢測方法
?
隨著現(xiàn)代工業(yè)的發(fā)展,人們對(duì)電能的需求量越來越大,對(duì)電能質(zhì)量的要求也越來越高。目前電力網(wǎng)中的電力負(fù)荷如感應(yīng)式異步電動(dòng)機(jī)、變壓器等,大部分屬于感性負(fù)載,在運(yùn)行過程中需要向這些設(shè)備提供相應(yīng)的無功功率,使電網(wǎng)的功率因數(shù)降低。為了對(duì)電力負(fù)荷設(shè)備進(jìn)行更好的監(jiān)測,針對(duì)具體情況采取相應(yīng)的措施,有必要對(duì)電網(wǎng)的功率因數(shù)進(jìn)行檢測。在三相電網(wǎng)的功率因數(shù)測量中,一般假設(shè)電網(wǎng)是三相平衡的,此時(shí)任意一相的功率因數(shù)就相當(dāng)于三相系統(tǒng)的功率因數(shù)。由于測量單相功率因數(shù)需要中性點(diǎn)(如果采用三相四線制),在某些應(yīng)用場合有很大的不便,因此本文提出了通過采樣三相中一相的電流以及另外兩相的線電壓" title="線電壓">線電壓之間的相位差來得到三相系統(tǒng)的功率因數(shù)的檢測方法。
由于利用該方法測量功率因數(shù)的接線方式有12種,每種接線方式的相位關(guān)系又不一樣,所以功率因數(shù)的計(jì)算以及超前滯后的判斷方法也有些差別。因此如何使功率因數(shù)的檢測與接線方式無關(guān)將成為一個(gè)重點(diǎn)。由于相關(guān)文獻(xiàn)較少,因此對(duì)與接線無關(guān)的三相功率因數(shù)檢測方法進(jìn)行研究有著重要意義。
本文利用電網(wǎng)三相電壓、電流間的相位角關(guān)系,通過直接檢測相電流相鄰的方波信號(hào)" title="方波信號(hào)">方波信號(hào)上升沿" title="上升沿">上升沿的時(shí)間差以及相電流和線電壓的相鄰的兩個(gè)方波的上升沿的時(shí)間差,來確定功率因數(shù)以及功率因數(shù)的超前滯后情況,從而得到了一種與接線無關(guān)的三相功率因數(shù)檢測方法。
1 工作原理
設(shè)三相的電壓分別為Ua、Ub、Uc,電流分別為Ia、Ib、Ic,假設(shè)電網(wǎng)三相平衡,則它們的表達(dá)式如下:
式中,Um表示每相電壓幅值,Im表示每相電流幅值,ω表示角頻率,表示相電流滯后相電壓的相角(功率因數(shù)角)。由此可以得到:
其中,-Ia表示負(fù)A相電流,-Ib表示負(fù)B相電流,-Ic表示負(fù)C相電流??梢?采用其中一相的相電流和另外兩相的線電壓之間的相位差來測量功率因數(shù)的接線方式有12種,分別為:Ia,Ubc;Ia,Ucb;Ib,Uca;Ib,Uac;Ic,Uab;Ic,Uba;-Ia,Ubc;-Ia,Ucb;-Ib,Uca;-Ib,Uac;-Ic,Uab;-Ic,Uba。下面以Ia,Ubc(I型接線)和Ia,Ucb(II型接線)兩種接線方式來討論φ的計(jì)算。
1.1 I型接線φ的計(jì)算
設(shè)α為Ubc滯后Ia的相角,由于Ia滯后Ua的相角為φ,而Ubc滯后Ua的相角為90°,所以有α=90°-φ。針對(duì)三種負(fù)載情況,α表達(dá)式如下:
在電路設(shè)計(jì)中,若把A相相電流和Ubc線電壓的采樣信號(hào)放大后,再進(jìn)行上升沿過零觸發(fā),即可得到反映相位的方波信號(hào)。針對(duì)純阻性負(fù)載、容性負(fù)載和感性負(fù)載,經(jīng)過上升沿過零觸發(fā)后可得到相電流和線電壓的方波信號(hào),從而得到如圖1(a)所示的一組波形,從上到下分別為相電流與線電壓的正弦波、上升沿過零觸發(fā)后的方波、純阻性負(fù)載電流與電壓上升沿時(shí)間差、容性負(fù)載電流與電壓上升沿時(shí)間差(圖中取φ=-45°)、感性負(fù)載電流與電壓上升沿時(shí)間差(圖中取φ=45°)。τ為相電流與線電壓的上升沿的時(shí)間差,τ的寬度隨的變化而變化。
設(shè)T為正弦波的周期,則τ和T滿足下面的表達(dá)式:
顯然,α=(τ/T)×360°。根據(jù)α與φ的關(guān)系,可以得到:
因此,針對(duì)A相電流Ia和線電壓Ubc的接線方式,超前滯后的判斷和相位角的絕對(duì)值|φ|的計(jì)算表達(dá)式如下:
1.2 II型接線φ的計(jì)算
設(shè)α為Ucb滯后Ia的相角,由于Ia滯后Ua的相角為,而Ucb滯后Ua的相角為270°,所以α=270°-φ。針對(duì)三種負(fù)載情況,有如下表達(dá)式:
同理,按照Ia、Ubc的分析方法,可以得到如圖1(b)所示的一組波形。此時(shí)τ和T滿足下面表達(dá)式:
?
因此,針對(duì)A相電流Ia和線電壓Ucb的接線方式,超前滯后的判斷和相位角的絕對(duì)值|φ|的計(jì)算表達(dá)式如下:
1.3 與接線無關(guān)的功率因數(shù)測量原理
采用同樣的分析方法,可以發(fā)現(xiàn)-Ia,Ucb;Ib,Uca;-Ib,Uac;Ic,Uab;-Ic,Uba等五種接線方式的相對(duì)位置的波形圖與Ia,Ubc接線方式的一樣,其的計(jì)算同式(1);而-Ia,Ubc;Ib,Uac;-Ib,Uca;Ic,Uba;-Ic,Uab等五種接線方式的相對(duì)位置的波形圖與Ia,Ucb接線方式的一樣,其φ的計(jì)算同式(2)。
因此,直接檢測相電流的兩個(gè)相鄰的方波信號(hào)上升沿的時(shí)間差,即可得到周期T;檢測相電流線電壓的相鄰的兩個(gè)上升沿過零觸發(fā)方波的上升沿的時(shí)間差,即可得到時(shí)間τ;根據(jù)τ落在周期T的范圍可確定接線方式是屬于I型還是II型,然后參照相應(yīng)的計(jì)算公式可以很容易算出相位角φ以及超前滯后情況,從而得到三相系統(tǒng)的功率因數(shù),這樣就可以做到功率因數(shù)的檢測與具體的三相接線方式無關(guān)。
2 信號(hào)的獲取
由與接線無關(guān)的三相功率因數(shù)測量方法的工作原理可知,獲取三相電網(wǎng)中一相的相電流和另外兩相的線電壓信號(hào)是本測量方法實(shí)現(xiàn)的一個(gè)重點(diǎn)。下面簡述該測量方法的信號(hào)獲取過程。
圖2為功率因數(shù)測量中相電流和線電壓的信號(hào)獲取連接示意圖,其中,左邊的虛框部分為配電柜的相關(guān)信號(hào)的連接示意圖,右邊的虛框部分為信號(hào)獲取連接示意圖。配電柜的輸入為電源側(cè)電源,輸出則為負(fù)載電源。在配電柜內(nèi)部,每一相都配有一個(gè)一次側(cè)電流互感器,該互感器把相電流(稱為一次側(cè)相電流)按照一定的變比(一般為1000:5)變換為較小的相電流(稱為二次側(cè)相電流)。在實(shí)際應(yīng)用中,相電流信號(hào)取樣二次側(cè)相電流,而線電壓信號(hào)則只需取另外兩相的線電壓即可。二次側(cè)相電流經(jīng)過電流采樣互感器后得到0~5mA的電流采樣信號(hào)IS,該信號(hào)通過電阻R1后得到反映相電流大小的電壓信號(hào)UIS,而線電壓則通過電壓互感器后得到0~2mA的電流信號(hào),該信號(hào)通過電阻R2后轉(zhuǎn)換為電壓采樣信號(hào)US。信號(hào)US和UIS經(jīng)過低通濾波和放大后得到0~5V的標(biāo)準(zhǔn)信號(hào),該標(biāo)準(zhǔn)信號(hào)通過上升沿觸發(fā)后可以得到標(biāo)準(zhǔn)方波信號(hào)。
?
有了相電流和線電壓的上升沿過零觸發(fā)后的方波信號(hào),利用單片機(jī)的中斷和定時(shí)器定時(shí)功能,可以分別得到與電網(wǎng)周期T成正比的計(jì)數(shù)值N1以及與相電流和線電壓方波信號(hào)上升沿時(shí)間差τ成正比的計(jì)數(shù)值N2。由于N1、N2的定時(shí)基準(zhǔn)相同,因此軟件只需根據(jù)N2、N1/4和3×N1/4的大小情況,來判斷接線方式是屬于I型還是II型;然后再根據(jù)對(duì)應(yīng)的計(jì)算公式即可得到相位角以及超前滯后情況,從而得到電網(wǎng)的功率因數(shù)cosφ。對(duì)于φ的具體計(jì)算方法以及如何提高的精度,可以參考相關(guān)文獻(xiàn)。
本文介紹的與接線無關(guān)的三相功率因數(shù)檢測方法已經(jīng)在功率因數(shù)控制器中得到應(yīng)用,并經(jīng)受住了市場的考驗(yàn)。從使用情況來看,該方法軟硬件設(shè)計(jì)簡單、穩(wěn)定性較好。由于采用三相系統(tǒng)中一相的相電流和另外兩相的線電壓之間的相位差來檢測電網(wǎng)的功率因數(shù),無需中性點(diǎn),且與具體的三相接線方式無關(guān),因此方便了安裝調(diào)試;另外,由于算法中精確地測量了電網(wǎng)周期,因此功率因數(shù)的精度不會(huì)因電網(wǎng)周期的變化而受到影響,提高了功率因數(shù)的測量精度。
?
參考文獻(xiàn)
1 李恒文,萬 鵬.高精度相位差(或COSφ)檢測系統(tǒng).電測與儀表,2001(4):27~29
2 何立民.單片機(jī)應(yīng)用技術(shù)選編(二).北京:北京航空航天大學(xué)出版社,1994