《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 解決方案 > 基于FPGA的射頻讀卡器設計

基于FPGA的射頻讀卡器設計

2012-03-08
作者:Xilinx

     與其他常用的自動識別技術如條形碼和磁條一樣,無線射頻識別(RFID" target="_blank">RFID)技術也是一種自動識別技術。每一個目標對象在射頻讀卡器中對應唯一的電子識別碼(UID),或者“電子標簽”。標簽附著在物體上標識目標對象,如紙箱、貨盤或包裝箱等。射頻讀卡器(應答器)從電子標簽上讀取識別碼。

        基本的RFID系統(tǒng)由三部分組成:天線或線圈、帶RFID解碼器的收發(fā)器和RFID電子標簽(每個標簽具有唯一的電子識別碼)。表1顯示了常用的四個RFID頻率及其潛在的應用領域。其中,目前商業(yè)上應用最廣的是超高頻(UHF),它在供應鏈管理中有可能得到廣泛的應用。

EPC電子標簽

        EPC表示電子產品代碼,是RFID電子標簽的標準,它包括電子標簽的數據內容和無線通信協議。EPC標準將條形碼規(guī)范中的數據信息標準與ANSI或其他標準化組織(802.11b)制定的無線數據通信標準結合在一起。目前應用在供應鏈管理中的EPC標準,屬于第二代EPC Class-1標準。

 


        Class-1標簽在出廠時已經被寫入,但也是可以現場下載。通常情況下,一旦標簽已被寫入,內存即被鎖定不可再次寫入信息。Class-1標簽采用常規(guī)的分組傳輸協議—讀卡器發(fā)送包含相關命令和數據的數據包,標簽隨后做出響應。

惡劣的讀卡器應用環(huán)境

        RFID的應用環(huán)境可能非常惡劣。信道的工作頻率是免許可的工業(yè)、科技與醫(yī)藥(ISM)頻帶。此頻帶中的RFID讀卡器受到來自無繩電話、無線耳麥、無線數據網絡以及其他臨近讀卡器的干擾。必須將每一讀卡器的RF接收器前端設計為能夠抵御強干擾信號,避免產生可導致詢問錯誤的失真。接收器的噪聲必須保持在較低的水平,以便具備足夠的動態(tài)范圍,從而以無錯方式檢測出低電平標簽響應信號。

 

        圖1中所示的讀卡器RF射頻收發(fā)器,是一個成熟的設計,能夠在存在大量干擾源的惡劣環(huán)境中穩(wěn)定地工作。發(fā)射器和接收器都帶有一個高動態(tài)范圍直接轉換調制器和解調器,因此最大限度地提高了穩(wěn)定性并降低了成本。

實用和可靠的射頻接收器設計

        接收器的核心是Linear公司的LT5516,這是一種高度集成化的直接轉換正交解調器,芯片上提供了一個精確正交移相器(0度至90度)。來自天線的信號在通過射頻濾波器之后,通過一個不平衡變壓器直接輸入到解調器輸入端口。由于LT5516的噪聲系數很低,在不需要低噪放大器(LNA)的情況下,仍能保持其21.5dBm IIP3和9.7dB P1dB的性能。

        在接收數據時,讀卡器發(fā)射連續(xù)載波(未調制),以便為標簽提供電源。在收到請求后,電子標簽通過對載波進行調幅,響應一個碼流。所采用的調制方式為幅移鍵控(ASK)或者反相-幅移鍵控鍵控(PR-ASK)。解調器帶有兩個正交移相檢出式輸出端口,因此具備天然的分集接收功能。如果由于多路或相位取消導致某個通道無法接收信號,另一條通道(移相90度)就可接收較強的信號,反之亦然。這樣,整體接收可靠性就得以提高。

        一旦解調完成,即可將I(相內)和Q(正交相位)差分輸出信號以AC方式耦合至一個運算放大器(被配置為一個差分放大器),隨后被轉換為單端輸出信號。這個時候應將高通角頻率設置為5KHz,低于接收數據流的最小信號頻率,高于最大多普勒頻率(可能被運動標簽采用),同時保持高于電力線頻率(60Hz)。這樣,輸出信號就能利用被配置為四階低通的LT1568順利穿過低通濾波器。低通角頻率應被設置為5MHz,以便最大碼流信號穿過濾波器,達到基帶。

        基帶信號然后被一個雙路低功耗模數轉換器(LTC2291,分辨率為12位)進行數字化處理。由于標簽碼流的帶寬為5KHz至5MHz,LTC2291能夠以25MSps的速率進行充分的采樣,從而精確地捕獲解調信號。在需要的時候,還可在基帶DSP中實現額外的數字濾波。這樣,接收器就能具備最大的邏輯閾值設置靈活性,該設置可由基帶處理器以數字化方式執(zhí)行。

 基帶任務和數字化射頻信道化處理,可提高用全FPGA解決方案實現的吸引力和集成度

高動態(tài)范圍射頻發(fā)射器設計

        發(fā)射器集成了一個鏡像抑制直接轉換式調制器。LT5568具備很高的線性度和較低的背景噪聲,因此能夠為所發(fā)射的信號提供出色的動態(tài)范圍性能。調制器能夠從數模轉換器(ACPR),有助于滿足發(fā)射頻率屏蔽要求。例如,當調制器射頻輸出電平為-8dBm時,ACPR指標優(yōu)于-60dBc。由于具備更出色的ACPR性能,信號可被放大至許可的1w功率(在美國為+30dBm),或者放大至2w,以符合歐盟規(guī)范。在上述兩種情況下,重要的是保持電平固定,因為該電平用于向電子標簽提供電源,并最大化讀卡距離。LTC5505型射頻功率檢測器的內部溫度補償功能,可準確地測定功率,提供穩(wěn)定的反饋信號,以調節(jié)射頻功率放大器的輸出功率。

基帶處理和網絡接口

         在基帶頻率上,FPGA執(zhí)行發(fā)送至DAC和來自模數轉換器(ADC)的波形的信道化任務。這一過程也被稱為數字中頻
處理,涉及濾波、增益控制、頻率轉換和采樣率變化等。FPGA甚至可以并行處理多個信道。

 

        圖2顯示了一個射頻讀卡器的架構。其他基帶處理任務包括:

 

  • 先導字段檢測
  • 排序估計
  • 調制和解調(ASK、頻移鍵控和相移鍵控)
  • 信號產生
  • 相關器處理
  • 峰值檢測和閾值設定
  • CRC糾錯和校驗和
  • 編碼和解碼(NRZ、Manchester、單極性、差分雙極性和Miller)
  • 幀檢測
  • ID去擾
  • 安全加密引擎

         所收到的RFID標簽數據可通過串口或網絡接口被傳送至企業(yè)系統(tǒng)服務器。這種傳統(tǒng)的架構正逐步演變?yōu)橐粋€高級分布式 TCP/IP 網絡的一個部分。在該網絡中,射頻讀卡器將負責管理臨近的標簽。

        在這種情況下,射頻讀卡器就象是電子標簽和連接至企業(yè)軟件系統(tǒng)的智化分布式數據庫之間的網關。

         取決于硬件/軟件功能分區(qū)情況,這些基帶任務即可在FPGA上完成,也可在DSP上完成,或者由二者聯手執(zhí)行。Xilinx公司推出了一個IP內核套件,其中包括FIR、CIC、DDS、DUC、DDC、比特相關器、正弦/余弦LUT等。這些邏輯電路非常適合執(zhí)行加密引擎任務(加密引擎采用移位寄存器和XOR)。針對Xilinx® VirtexTM-4系列的DSP48引擎十分適合執(zhí)行其他信號處理任務。

        一個基帶處理器負責控制各種基帶處理任務的功能性和調度,還負責鏈路層協議。這些基帶處理任務包括跳頻、發(fā)送前偵聽、防沖突算法處理等?;鶐幚砥鬟€提供了以太網、USB、固件等接口。

        基帶任務和數字化射頻信道化處理,可提高全FPGA解決方案的吸引力和集成度。FGPA功能、DSP功能,以及基帶處理功能,都可被整合于一個帶有嵌入式處理器的FPGA。

 

 

        圖 3 顯示了一個基于 FPGA 的 RFID 處理器的架構。嵌入式處理器可以是一個硬核(譬如,Virtex-4 FX產品家族采用的PowerPCTM),還可以是一個軟核 (譬如SpartanTM設備中采用的MicroBlazeTM),甚至是PowerPC和MicroBlaze的結合體。用戶可以將內置硬以太網MAC(EMAC)連接至外部以太網物理層,進而連接至以太網。另外,用戶還可使用面向10/100-BaseT的Lite Ethernet MAC IP。

        PowerPC/MicroBlaze嵌入式處理器執(zhí)行以下任務: 

  • EPC數據處理和前轉
  • 協議處理
  • 詢問調度
  • TCP/IP 網絡接口
  • 控制和監(jiān)視
  • 調制解調器控制
  • 升級代理
  • HTTP服務器
  • SNMP/MIB處理

        Xilinx千兆以太網系 統(tǒng) 參 考 設 計(GSRD)是一個基于EDK的參考系統(tǒng),能夠在基于TCP/IP的協議接口和用戶數據接口之間搭起一座高性能的橋梁。GSRD的組件具備滿足TCP/IP系統(tǒng)每比特和每包開銷要求的功能。

        Xilinx還針對Monta Vista Linux 和 Treck堆棧提供了發(fā)射性能基準。采用 Xilinx Platform Studio (XPS)微處理器庫定義的Nucleus PLUS RTOS,為采用MicroBlaze和PowerPC處理器的系統(tǒng)帶來了新的優(yōu)勢。Nucleus PLUS RTOS尺寸很小,這意味著它能夠利用片上現有的存儲器,從而最大限度降低功耗,提高性能。此外,廣泛的中間件使得Nucleus PLUS RTOS成為RFID后端網絡的理想選擇。

        利用XilinxCoolRunnerTM-II型CPLD,手持式射頻讀卡器可連接至硬盤驅動器、QWERTY鍵盤、可移動硬盤接口、各種顯示設備和其他計算機外設(如圖4所示)。這些CPLD還能幫助應用處理器,并且滿足低功耗、高性能和更小芯片封裝等要求。

結論

        將來,射頻讀卡器很可能具備前端 DSP功能,比如射頻協議處理等。如今,這些功能在獨立式DSP中進行處理,將來,它們很有可能被集成于FPGA。嵌入式軟處理內核已可顯著提升DMIPS/MHz性能,不久以后,高版本的處理內核將取代控制讀卡器應用程序的后端外部處理器,從而借助可編程邏輯最大限度地提高射頻讀卡器設備的靈活性,同時最大限度降低其成本。

        Xilinx 決 心 不 斷 改 進 其XtremeDSPTM 和MicroBlaze可配置軟處理內核,從而不斷增強FPGA的DSP及嵌入式處理功能。

        作者:Niladri Roy   Xilinx公司垂直市場營銷部ISM分部高級經理 

                    Akshaya Trivedi   Xilinx公司垂直市場營銷部無線分部高級系統(tǒng)工程師 

                    James Wong   Linear公司產品行銷經理

本站內容除特別聲明的原創(chuàng)文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創(chuàng)文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。