《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 基于DSP的3G LTE應(yīng)用實現(xiàn)
基于DSP的3G LTE應(yīng)用實現(xiàn)
飛思卡爾半導(dǎo)體
Martin Beuttner
摘要: 3G LTE(長期演進)是第三代伙伴計劃(3GPP)的一個高級標(biāo)準(zhǔn),為廣域網(wǎng)提供下一代寬帶無線技術(shù) ...
關(guān)鍵詞: NGN|4G DSP 3G LTE
Abstract:
Key words :

      3G LTE(長期演進)是第三代伙伴計劃(3GPP)的一個高級標(biāo)準(zhǔn),為廣域網(wǎng)提供下一代寬帶無線技術(shù)。

      與以前各階段的3GPP相比,3G LTE的目標(biāo)是更高的吞吐量、更低的時延以及高效的IP回程,提供一種新的可以大規(guī)模部署的移動網(wǎng)絡(luò)技術(shù),預(yù)示著一個富媒體和實時服務(wù)新時代的到來。

      由于最近在HSPA與HSPA+技術(shù)上的提升,3G/UMTS必然在未來幾年內(nèi)仍具競爭力,然而,通過3G LTE,3GPP和無線運營商已經(jīng)在朝著一種更新的、頻譜效率(spectral-efficient radio)更高、可擴展、也更加高效的網(wǎng)絡(luò)架構(gòu)演進。

      最終,3G LTE將使移動運營商能夠更有力地與固定寬帶服務(wù)競爭并繼續(xù)推動移動對固網(wǎng)的替代。

      為實現(xiàn)這些目標(biāo),特別設(shè)立了3G LTE,以便廣泛改善無線和網(wǎng)絡(luò)通信,同時確保與現(xiàn)有的商業(yè)和監(jiān)管環(huán)境的兼容。頻率帶寬分配就是一個例子,其中,3G LTE必須能夠支持與WCDMA同樣的頻率和頻帶。但是,盡管WCDMA使用固定的5MHz帶寬,3G LTE的設(shè)計支持從1.25到20MHz的靈活的載波帶寬,以支持即將部署的更精細(xì)粒度的頻率。

      為了進一步改進系統(tǒng),推出了更多的特性,如用于提高帶寬的多天線技術(shù)(MIMO:多輸入多輸出)。利用MIMO技術(shù),在20MHz頻段內(nèi),峰值數(shù)據(jù)速率預(yù)期將達到下行300Mbps和上行150Mbps。

      3G LTE既可被用于成對頻譜(FDD)也可被用于非成對頻譜(TDD)。對于FDD,上行和下行話務(wù)可以在單獨的頻段內(nèi)同步傳輸,而對于TDD,在同一個頻帶內(nèi),上行和下行鏈路的傳輸是不連續(xù)的。

      LTE TDD參數(shù)與FDD的參數(shù)非常接近,而對于FDD和TDD(濾波除外),LTE L1層也非常類似。

      即使不是全部,今天的大多數(shù)蜂窩系統(tǒng)使用FDD,而世界上90%以上的可用移動頻率都在FDD之內(nèi),剩下的10%主要位于最近中國采用的TD-SCDMA內(nèi)。

      3G-LTE的高級技術(shù)目標(biāo)為:下行鏈路容量:20MHz帶寬的瞬時數(shù)據(jù)速率高達300Mbps;上行鏈路容量:20MHz帶寬的瞬時數(shù)據(jù)速率可達150Mbps;帶寬可擴展至20MHz,覆蓋1.25MHz、1.6MHz、5MHz、10MHz、15MHz和20MHz;MIMO支持;FDD及TDD模式;時延:理想條件下,下行鏈路時延低于0.5ms;用戶吞吐量:相當(dāng)于HSPA+的4.5倍;移動速率:經(jīng)過優(yōu)化,支持高達120km/h的速率,但是也支持350km/h的移動速率。

      飛思卡爾半導(dǎo)體的MSC8156 DSP

      為了滿足對高級3G和4G服務(wù)的不斷增長的需求,無線基礎(chǔ)架構(gòu)設(shè)備制造商越來越需要能夠提供卓越性能的芯片。通過提供近期基于下一代無線標(biāo)準(zhǔn),如3G LTE(TDD及FDD)、WiMAX和HSPA+的網(wǎng)絡(luò)部署所要求的靈活性、集成度和負(fù)擔(dān)能力,飛思卡爾基于StarCore技術(shù)的MSC8156 DSP滿足了這一需求。尤其是它的出眾的性能支持3G LTE基站對高速率、高吞吐量和低時延的要求。

      MSC8156是一款基于飛思卡爾先進的SC3850 StarCore DSP內(nèi)核技術(shù)的6核DSP,旨在大幅提升無線基站設(shè)備的性能。它提供業(yè)界領(lǐng)先的性能和節(jié)能水平,在一個高度集成的SoC內(nèi),利用45nm處理技術(shù)提供與6GHz單核器件等效的性能。MSC8156 DSP把功能集成到以前要求多個獨立部件的單一器件內(nèi),以此來降低系統(tǒng)成本。

      該器件集成了6個完全可編程的SC3850 DSP內(nèi)核,每個都以1GHz運行,其架構(gòu)經(jīng)過高度優(yōu)化,支持無線基礎(chǔ)架構(gòu)應(yīng)用。由于采用片上集成,基于MAPLE-B的基帶加速器為Turbo和Viterbi通道以及DFT/iDFT和FFT/iFFT算法支持硬件加速。基于內(nèi)部RISC的QUICC Engine子系統(tǒng)支持多個網(wǎng)絡(luò)協(xié)議,以通過分組網(wǎng)絡(luò)幫助提供可靠的數(shù)據(jù)傳輸,同時從DSP內(nèi)核大幅分流處理負(fù)載。

      MSC8156嵌入了大容量內(nèi)存并支持多種高級的、高速接口類型,包括兩個RapidIO互聯(lián)技術(shù)接口、兩個用于通信的Gigabit以太網(wǎng)接口、一個PCI Express控制器、兩個支持高速、業(yè)界標(biāo)準(zhǔn)內(nèi)存接口的DDR控制器和四個多通道TDM接口。

      在開發(fā)工具方面,CodeWarrior集成開發(fā)環(huán)境(IDE)利用Eclipse技術(shù),提供一個高度綜合的多核開發(fā)環(huán)境。它包括:C和C++編譯器、源語言調(diào)試器、內(nèi)核和器件模擬器、用于個性化配置和程序/數(shù)據(jù)跟蹤的軟件分析插件以及與經(jīng)過優(yōu)化的器件驅(qū)動器一起提供的免版權(quán)費的SmartDSP操作系統(tǒng)。

      為了讓OEM廠商更快地把產(chǎn)品推向市場,飛思卡爾圍繞MSC8156開發(fā)了一種綜合硬件和軟件參考包,其設(shè)計目的是為了讓系統(tǒng)更快地連接在一起,以便進行*估和開發(fā)。開發(fā)板和3G LTE參考軟件組件詳述如下。

      MSC8156AMC

      基帶參考硬件是以MSC8156AMC為基礎(chǔ)的,MSC8156AMC后者是一種高密度、單寬全高Advanced MC Advanced Mezzanine Card(AMC) DSP平臺,構(gòu)建于三個MSC8156 DSP基礎(chǔ)之上,可插入緊湊型MicroTCA底板。

      這種18GHz的處理能力與為無線基礎(chǔ)架構(gòu)應(yīng)用高度優(yōu)化的架構(gòu)相結(jié)合,使其成為開發(fā)基于下一代無線標(biāo)準(zhǔn),如(FDD-LTE、TDD-LTE、WiMAX和HSDPA+)的解決方案的理想平臺。

      每個MSC8156 DSP有1GB的64位寬版DDR3內(nèi)存,分為兩個內(nèi)存庫。對于數(shù)據(jù)平面應(yīng)用,高吞吐量的3.125GHz x4 RapidIO鏈路把三個MSC8156 DSP互相連接起來并將其連接到數(shù)據(jù)背板。RapidIO接口通過IDT的高帶寬10端口(x4)CPS10Q串行RapidIO轉(zhuǎn)換器連接。數(shù)據(jù)/控制平面應(yīng)用由1G以太網(wǎng)接口處理。兩個1000 Base-X Gigabit接口通過一個以太網(wǎng)轉(zhuǎn)換器把背板連接到DSP。每個DSP有兩個通過以太網(wǎng)轉(zhuǎn)換器連接到背板的RGMII接口。在前面板上提供兩個額外的Gigabit以太網(wǎng)接口,用于測試和控制。板控制和熱插拔由基于Pigeon Point的模塊管理控制器提供。

      為了有助于未來的開發(fā),圍繞“夾層”概念設(shè)計了高級夾層卡(AMC)。夾層為系統(tǒng)提供快速實現(xiàn)未來AMC原型系統(tǒng)開發(fā)的組成部件。

      MSC8156AMC基帶L1處理器卡的特性包括:處理器:多達3個MSC8156 6核StarCore DSP,高達1.0GHz的容量,帶有集成串行RapidIO以及Gigabit以太網(wǎng)接口;運行:單獨或AMC插卡;內(nèi)存:每個MSC8156具備2 x 512MB的64bit寬版DDR3內(nèi)存;四個串行RapidIO(sRIO)接口以及兩個1000Base-X背板接口;1000Base-T、USB以及UART前面板接口;IPMC:板啟動、溫度監(jiān)控、電子鍵控(E-Keying)以及狀態(tài)LED指示燈;外形:AMC單寬、全高:180.6mm×73.5mm

      L1實時軟件子系統(tǒng)

      飛思卡爾提供LTE L1支持軟件庫,包括一個定制操作系統(tǒng)、驅(qū)動器和主要信號處理功能。

      LTE L1軟件包括3GPP標(biāo)準(zhǔn)中定義的物理基帶信道處理和無線傳輸信道功能。飛思卡爾提供一套綜合的內(nèi)核模塊,覆蓋物理下行鏈路共享信道和物理上行鏈路共享信道的L1處理。內(nèi)核被進一步組合為上行鏈和下行鏈,它們以SmartDSP實時操作系統(tǒng)為參考實時運行。所有以上提到的軟件在開發(fā)上都能使用ANSI-C語言調(diào)用,而且提供完整的開發(fā)文檔。

      簡而言之,物理層處理功能包括:調(diào)制、信道編碼、傳輸方案、復(fù)用、MIMO/分集、信道估測、均衡(3GPP范圍之外)。

      更多詳細(xì)資料列舉如下:

      L1軟件包包括

      信號處理庫:包含LTE L1信號處理管理器和內(nèi)核庫功能。這種信號處理內(nèi)核是基本的處理單元,而信號處理管理器則是一系列內(nèi)核的鏈路集成,包括DL傳輸信道包、DL物理信道包、UL傳輸信道包、UL物理信道包。

      MATLAB模型包:用于生成測試矢量的已編譯的Matlab參考鏈路。

      多核MSC8156上的上行/下行鏈路功能集成(PDSCH/PUSCH):采用SmartDSP OS實時運行。

      在一個典型 LTE 應(yīng)用中使用 MSC8156

      MSC8156 DSP支持廣泛的配置組合。需考慮小區(qū)規(guī)模、上行和下行吞吐量、扇區(qū)數(shù)量、活躍/已連接用戶數(shù)量、信號處理算法復(fù)雜度(MMSE、SIC等)、天線數(shù)量等參數(shù),以決定器件數(shù)量和它們的分區(qū)。

      一個典型的20MHz LTE FDD基站示例將表明一個完整的L1解決方案如何映射到MSC8156上。

      典型的基站宏參數(shù)考慮如下:一個扇區(qū);小區(qū)規(guī)模:10km;下行鏈路 4×4 MIMO;上行鏈路 2×4 MIMO;4 RX 天線、4 TX 天線;數(shù)據(jù)速率:下行鏈路290Mbps,上行鏈路120Mbps;應(yīng)用上行鏈路的MMSE均衡器。

      兩個MSC8156 DSP實現(xiàn)對LTE物理信道的綜合支持。一個器件負(fù)責(zé)所有上行鏈路處理,而另外一個被分配負(fù)責(zé)所有下行鏈路處理。

      下圖說明了器件映射的原理。

      MSC8156可以通過PCI Express控制器、Gigabit以太網(wǎng)或sRIO連接器連接。sRIO鏈路以一種串行方式使用,被稱為菊花鏈(daisy chaining)。這省去了對sRIO轉(zhuǎn)換器的需求。

      無線頻率模塊通過CPRI鏈路連接。一個小型FPGA器件負(fù)責(zé)從CPRI到sRIO的轉(zhuǎn)換。這是系統(tǒng)中需要的唯一一個FPGA。然后就是鏈中的上行鏈路器件,接下來是下行鏈路器件。此器件被連接到L2器件,在這里被映射到一個QorIQ處理器上。

      LTE信號處理任務(wù)可以在StarCore SC3850內(nèi)核或MAPLE-B協(xié)處理器上執(zhí)行。一個典型的分區(qū)如下所示:

      上行鏈路器件:

      3個內(nèi)核用于共享信道

      1個內(nèi)核用于 隨機接入信道(RACH)和聲音

      1個內(nèi)核用于控制信道

      最后一個內(nèi)核用作主內(nèi)核,在其他內(nèi)核上安排和分配信號處理任務(wù)

      下行鏈路器件:

      3個內(nèi)核用于共享信道

      1個內(nèi)核用于控制信道

      1個內(nèi)核用于物理廣播信道(PBCH)、物理多播信道(PMCH)、物理控制格式指示信道(PCFICH)和物理HARQ指示符信道(PHICH)

      最后一個內(nèi)核作為任務(wù)調(diào)度器

      下行鏈路器件的負(fù)載通常低于上行鏈路器件的負(fù)載。

      下列表格詳細(xì)列出了內(nèi)核與MAPLE-B在功能上的分工。

      通過這種方法,內(nèi)核被專門用于預(yù)先確定的任務(wù),但是如何分配任務(wù)則由調(diào)度器負(fù)責(zé)。為發(fā)揮器件能力以便實現(xiàn)1ms的時延要求,該模塊具有很高的重要性。

      例如,在上行鏈路器件上,當(dāng)接收到參考信號的時候,信道估測將首選被分配到內(nèi)核1、2和3上。然后,當(dāng)接收到最后的數(shù)據(jù)符號的時候,可以在三個內(nèi)核上安排均衡處理。接下來是解映射/解擾以及解交織。通常在空閑時隙安排測量。

      上行鏈路器件利用所有的MAPLE-B處理部件,而下行鏈路器件僅將其用于最后的快速傅立葉反變換(IFFT)。對于更高的上行鏈路吞吐量,上行鏈路器件能夠遠程利用來自于下行鏈路器件的Turbo Viterbi處理部件(TVPE)。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。