《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 人工智能 > 设计应用 > 基于无监督机器学习的地质断层识别与深度估算
基于无监督机器学习的地质断层识别与深度估算
电子技术应用
刘顺强
中化地质矿山总局湖北地质勘查院
摘要: 为解决Werner反卷积解在地质构造深度估计中结果不确定性的问题,采用无监督机器学习K-means聚类算法对Werner解进行优化分析。通过构建包含两个岩墙体的合成磁场模型进行测试,并添加随机噪声增加复杂性。将合成数据和实际数据的Werner解分别输入聚类算法进行分析,结果表明,该算法在合成模型中准确识别出两个深度分别为5 m和8 m的地质体,在实际数据中识别出三个深度分别为536 m、635 m和530 m的地质体,与该区域前期勘探结果相符。研究证实,该算法不仅能有效确定地质体的数量,还能准确估算其深度位置,即使在存在噪声的情况下依然表现稳定。
中圖分類號:P631.4 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.256258
中文引用格式: 劉順強. 基于無監(jiān)督機器學(xué)習(xí)的地質(zhì)斷層識別與深度估算[J]. 電子技術(shù)應(yīng)用,2025,51(9):44-49.
英文引用格式: Liu Shunqiang. Geological fault identification and depth estimation based on unsupervised machine learning[J]. Application of Electronic Technique,2025,51(9):44-49.
Geological fault identification and depth estimation based on unsupervised machine learning
Liu Shunqiang
Hubei Geological Prospecting Institute of CCGMB
Abstract: To address the uncertainty of Werner deconvolution results in geological structure depth estimation, the K-means clustering algorithm in unsupervised machine learning was applied for optimized analysis of Werner solutions. A synthetic magnetic field model containing two dike-like bodies was constructed and tested, with random noise added to increase complexity. Werner solutions from both synthetic and actual data were analyzed using the clustering algorithm. The results showed that the algorithm accurately identified two geological bodies with depths of 5 m and 8 m in the synthetic model and three bodies with depths of 536 m, 635 m, and 530 m in actual data, consistent with previous exploration findings in the region. The study demonstrated that this algorithm effectively determined the number of geological bodies and accurately estimated their depths, maintaining stability even with noise.
Key words : Werner deconvolution;depth estimation;K-means clustering;geological structure;unsupervised learning

引言

隨著地球物理數(shù)據(jù)采集技術(shù)的進(jìn)步,地磁勘探在地質(zhì)深度估計和結(jié)構(gòu)識別中發(fā)揮了重要作用[1-3]。近年來,人工智能和機器學(xué)習(xí)技術(shù)的快速發(fā)展,使得這些方法在地質(zhì)數(shù)據(jù)解譯中應(yīng)用日益廣泛[4-8]。例如,Sun等[9]提出的AI模型能有效處理大規(guī)模地質(zhì)數(shù)據(jù),提高地球系統(tǒng)科學(xué)的研究效率;Gobashy和Abdelazeem[10]基于元啟發(fā)式算法的研究表明,機器學(xué)習(xí)在地球物理數(shù)據(jù)的非線性問題處理中具有優(yōu)勢;Reichstein等[11]通過結(jié)合深度學(xué)習(xí)與物理模型,實現(xiàn)了多維地質(zhì)數(shù)據(jù)的高精度解譯;而Guo等[12]則利用深度學(xué)習(xí)方法反演三維地質(zhì)結(jié)構(gòu),顯著提升了地磁數(shù)據(jù)的檢測精度。

然而,傳統(tǒng)的Werner反卷積方法在處理復(fù)雜地磁數(shù)據(jù)、尤其是含噪數(shù)據(jù)時,難以精確識別地質(zhì)體的位置和數(shù)量。為此,本文提出一種改進(jìn)方法,將K-means聚類技術(shù)應(yīng)用于Werner反卷積生成的數(shù)據(jù)集,通過聚類分析更精確地識別地質(zhì)體的深度和分布。這一方法不僅提高了解譯精度,也克服了傳統(tǒng)方法在復(fù)雜地質(zhì)結(jié)構(gòu)處理中的局限性。


本文詳細(xì)內(nèi)容請下載:

http://ihrv.cn/resource/share/2000006686


作者信息:

劉順強

(中化地質(zhì)礦山總局湖北地質(zhì)勘查院,湖北 武漢 430070)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。