《電子技術應用》
您所在的位置:首頁 > 模拟设计 > 设计应用 > 全过程学业预警跟踪评价系统的研究与实现
全过程学业预警跟踪评价系统的研究与实现
电子技术应用
李启鹏1,曾松伟2
1.浙江农林大学 数学与计算机科学学院;2.浙江农林大学 光机电工程学院
摘要: 传统的学业预警系统通常更多关注学生的成绩、考勤等终结性指标,并在这些指标达到特定条件时触发预警。所研究的学业预警系统采用了全过程化监测预警方法,不仅对学生的期末成绩、年度考核、出勤等常规指标进行监测,还对学生的课堂表现、课后作业、团队考核、思想政治考核、经济压力等进行全面跟踪、分析与评价。同时根据本科生导师制实施细则,发动各导师积极参与到学业预警活动中,作为学生学习过程中的重要指导者,跟踪和评估学生的学业表现,并提供及时、有效、精准的学业指导,实现了从发出预警到指导效果的全程、闭环监控。采用粒子群算法(PSO)优化支持向量机(SVM),并结合Web与小程序技术,实现了全过程学业预警跟踪评价系统,有效提升了预警的精准度和时效性,填补了传统学业预警系统的不足。该系统对于提高学生学业质量具有重要意义,同时也为其他高校的学业预警帮扶系统提供参考。
中圖分類號:G456;TP311.1;TP399 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245298
中文引用格式: 李啟鵬,曾松偉. 全過程學業(yè)預警跟蹤評價系統(tǒng)的研究與實現(xiàn)[J]. 電子技術應用,2025,51(2):86-92.
英文引用格式: Li Qipeng,Zeng Songwei. Research and implementation of a full-process academic early warning and tracking evaluation system[J]. Application of Electronic Technique,2025,51(2):86-92.
Research and implementation of a full-process academic early warning and tracking evaluation system
Li Qipeng1,Zeng Songwei2
1.College of Mathematics and Computer Science, Zhejiang A&F University; 2.College of Optical, Mechanical and Electrical Engineering
Abstract: Traditional academic warning systems usually focus more on terminal indicators such as students’ grades and attendance, and trigger warnings when these indicators meet specific conditions. The academic warning system studied in this paper adopts a whole-process monitoring and warning method, which not only monitors conventional indicators such as students’ final grades, annual assessments, and attendance, but also comprehensively tracks, analyzes and evaluates students’ classroom performance, homework after class, team assessments, ideological and political assessments, and economic pressure, etc. Meanwhile, based on the implementation rules of the undergraduate tutor system, all tutors are encouraged to actively participate in academic warning activities. As important mentors in the learning process of students, they track and evaluate students’ academic performance, and provide timely, effective, and precise academic guidance, realizing the whole-process and closed-loop monitoring from issuing warnings to guiding effects. This paper uses Particle Swarm Optimization (PSO) to optimize Support Vector Machine (SVM), and combines Web and mini-program technology to implement a whole-process academic warning tracking and evaluation system, which effectively improves the accuracy and timeliness of warnings, filling in the gaps of traditional academic warning systems. This system is of great significance for improving the quality of students’ academic performance, and also provides a reference for academic warning support systems in other universities.
Key words : academic early warning;dual mentorship;whole process;mutual assistance and mutual supervision;multidimensional data-drive

引言

隨著中國高等教育規(guī)模的不斷擴大,高等教育已經(jīng)從精英化教育轉(zhuǎn)向普及化教育,如何保證學生的高質(zhì)量培養(yǎng)已成為高校教育管理亟待解決的問題[1]。在此背景下,學業(yè)全過程預警機制應運而生,成為高校提高教學質(zhì)量的有效措施[2-3]。

學業(yè)預警機制是指通過對學生學習狀態(tài)和成績情況進行監(jiān)測和評估,及時發(fā)現(xiàn)并干預存在學業(yè)風險的學生,從而最大限度地提高學生培養(yǎng)質(zhì)量的一種管理方法。該機制不僅關注學生個性化需求,同時也涉及教學體系、教師隊伍的建設和優(yōu)化等方面。

建立學業(yè)過程預警機制不僅可以幫助學校提高教學效果,還可以“讓學生忙起來、讓教學活起來、讓管理嚴起來”。及時發(fā)現(xiàn)存在學業(yè)風險的學生并采取適當?shù)母深A措施幫助他們調(diào)整學習狀態(tài)、提高學習效率是至關重要的;另外,學校還應加強與學生的互動和溝通,以更好地了解他們的真實需求和反饋。通過這種方式,可以激發(fā)學生的學習熱情和創(chuàng)新能力,促使他們更積極地投入到學習當中。此外,建立學業(yè)預警機制還可以促進高校管理的嚴格化、規(guī)范化和信息化,實現(xiàn)數(shù)字賦能,為高校教育管理提供有力保障,為推動我國教育事業(yè)的發(fā)展做出積極貢獻。


本文詳細內(nèi)容請下載:

http://ihrv.cn/resource/share/2000006331


作者信息:

李啟鵬1,曾松偉2

(1.浙江農(nóng)林大學 數(shù)學與計算機科學學院,浙江 杭州 311300;

2.浙江農(nóng)林大學 光機電工程學院,浙江 杭州 311300)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。