基于CNN-BiLSTM-Attetion的銀杏液流預(yù)測模型及環(huán)境因子影響研究
電子技術(shù)應(yīng)用
李波,武斌
浙江農(nóng)林大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院
摘要: 樹木液流受生理活動(dòng)和多重環(huán)境因子的共同作用,表現(xiàn)為非線性和隨機(jī)性特征,為預(yù)測模型的精確度帶來挑戰(zhàn)。對此,結(jié)合CNN卷積層、BiLSTM雙向網(wǎng)絡(luò)結(jié)構(gòu)和注意力機(jī)制的優(yōu)勢分別對樹干液流序列的局部特征、長期依賴和關(guān)鍵信息進(jìn)行提取,并根據(jù)自測銀杏液流數(shù)據(jù)集構(gòu)建基于CNN-BiLSTM-Attetion的樹干液流預(yù)測模型。該模型的R2、MSE和MAE分別為0.977 3、0.002 9和0.013 4,相較于CNN、BiLSTM、XGBoost、RNN和TCN建立的模型均有不同程度的提高。另外,還利用特征工程對環(huán)境因子的重要性進(jìn)行排名,分析銀杏樹干液流在生長季初期對環(huán)境因子的響應(yīng)規(guī)律,對銀杏生長季初期的灌溉和養(yǎng)護(hù)提供理論依據(jù)。
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.245138
中文引用格式: 李波,武斌. 基于CNN-BiLSTM-Attetion的銀杏液流預(yù)測模型及環(huán)境因子影響研究[J]. 電子技術(shù)應(yīng)用,2024,50(9):101-105.
英文引用格式: Li Bo,Wu Bin. Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors[J]. Application of Electronic Technique,2024,50(9):101-105.
中文引用格式: 李波,武斌. 基于CNN-BiLSTM-Attetion的銀杏液流預(yù)測模型及環(huán)境因子影響研究[J]. 電子技術(shù)應(yīng)用,2024,50(9):101-105.
英文引用格式: Li Bo,Wu Bin. Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors[J]. Application of Electronic Technique,2024,50(9):101-105.
Research of ginkgo sap flow prediction model based on CNN-BiLSTM-Attetion and the impact of environmental factors
Li Bo,Wu Bin
College of Mathematics and Computer Science, Zhejiang Agriculture and Forestry University
Abstract: Sap flow is subject to the combined effects of physiological activities and multiple environmental factors, and exhibits nonlinear and stochastic characteristics, which poses a challenge to the accuracy of prediction models. In this regard, the advantages of CNN convolutional layer, BiLSTM bidirectional network structure and attention mechanism are combined to extract the local features, long-term dependence and key information of sap flow sequences, respectively, and the CNN-BiLSTM-Attetion sap flow prediction model is constructed according to the self-test ginkgo sap flow data set. The model has the R2, MSE, and MAE of 0.977 3, 0.002 9, and 0.013 4, respectively, which are all improved in varying degrees compared with the CNN, BiLSTM, XGBoost, RNN and TCN. In addition, feature engineering is also used to rank the importance of environmental factors and analyze the response regularity of ginkgo sap flow to environmental factors at the beginning of the growing season, which provides a theoretical basis for irrigation and maintenance of ginkgo at the beginning of the growing season.
Key words : sap flow prediction model;CNN-BiLSTM-Attetion;environmental factors;early growing season
引言
森林是地球生態(tài)系統(tǒng)不可或缺的一部分,由各種樹種組成的森林系統(tǒng)約占地球陸地總面積的1/3[1],樹木的蒸騰作用在環(huán)境變化中起著至關(guān)重要的作用。所以,準(zhǔn)確預(yù)測樹木蒸騰量對地球水文平衡和制定氣候變化下的可持續(xù)發(fā)展戰(zhàn)略具有重要意義[2-3]。樹干液流是樹木生長和生理活動(dòng)的重要條件之一,反映了樹木的水分和養(yǎng)分運(yùn)輸狀況。通過監(jiān)測樹干液流的速率和方向[4],可以了解樹木的需水和耗水特性,進(jìn)而評估樹木的水分利用效率和養(yǎng)分供應(yīng)情況[5]。因此對樹干液流的準(zhǔn)確預(yù)測變得十分重要。
本文詳細(xì)內(nèi)容請下載:
http://ihrv.cn/resource/share/2000006150
作者信息:
李波,武斌
(浙江農(nóng)林大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,浙江 杭州 311300)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。