《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 一種基于點云實例分割的六維位姿估計方法
一種基于點云實例分割的六維位姿估計方法
網(wǎng)絡安全與數(shù)據(jù)治理
周劍
蘇州深淺優(yōu)視智能科技有限公司
摘要: 提出了一種基于SoftGroup實例分割模型和PCA主成分分析算法來估計物體位姿的方法。在工業(yè)自動化領域,通常會為諸如機器人、機械臂配備視覺系統(tǒng)并利用二維圖像估算目標物體位置,但當目標物體出現(xiàn)堆疊、遮擋等復雜場景時,對二維圖形的識別精度往往有所下降。為準確、高效地獲取物體位置,充分利用三維點云數(shù)據(jù)的高分辨率、高精度的優(yōu)勢:首先將深度相機采集到的RGB-D圖像轉為點云圖,接著利用SoftGroup模型分割出點云圖中的目標對象,最后用PCA算法得到目標的六維位姿。在自制工件數(shù)據(jù)集上進行驗證,結果表明對三種工件識別的平均AP高達97.5%,單張點云圖識別用時僅0.73 ms,證明所提出的方法具有高效性和實時性,為諸如機器人定位、機械臂自主抓取場景帶來了全新的視角和解決方案,具有顯著的工程應用潛力。
中圖分類號:TP391文獻標識碼:ADOI:10-19358/j-issn-2097-1788-2024-05-006
引用格式:周劍.一種基于點云實例分割的六維位姿估計方法[J].網(wǎng)絡安全與數(shù)據(jù)治理,2024,43(5):42-45,60.
6D pose estimation based on point cloud instance segmentation
Zhou Jian
DEEPerceptron Tech
Abstract: This paper proposes a method based on the SoftGroup instance segmentation model and Principal Component Analysis (PCA) algorithm for estimating object poses. In the field of industrial automation, visual systems are often equipped on robots and robotic arms to estimate the position of target objects using 2D images. However, in complex scenarios such as stacking and occlusion, the recognition accuracy of 2D images tends to decrease. To accurately and efficiently obtain object positions, this paper fully leverages the high-resolution and high-precision advantages of 3D point cloud data. Firstly, RGB-D images captured by a depth camera are converted into point cloud images. Then, the SoftGroup model is employed to segment the target objects in the point cloud image, and finally, the PCA algorithm is used to obtain the six-dimensional pose of the target. Validation on a self-made dataset shows an average AP of 97.5% for the recognition of three types of objects. The recognition time for a single point cloud image is only 0.73 ms, demonstrating the efficiency and real-time capability of the proposed method. This approach provides a new perspective and solution for scenarios such as robot localization and autonomous grasping of robotic arms, with significant potential for practical engineering applications.
Key words : point cloud data; SoftGroup instance segmentation; 6D pose estimation

引言

近年,隨著激光掃描儀、相機、三維掃描儀等硬件設備的發(fā)展與普及,點云數(shù)據(jù)的獲取途徑變得更加多樣,數(shù)據(jù)獲取的難度不斷降低。相較于二維圖像,三維點云數(shù)據(jù)具備無可比擬的優(yōu)勢。其高分辨率、高精度、高緯度的特性賦予點云數(shù)據(jù)更為豐富的空間幾何信息,能夠直觀地表達物體的形狀特征。近年來,點云數(shù)據(jù)在工業(yè)測量、機械臂抓取、目標檢測、機器人視覺等領域得到了廣泛應用[1–3]。

在工業(yè)自動化領域,通常需要先獲得物體的位姿信息再進行后續(xù)抓取動作。自動抓取物體可分為結構化場景和非結構化場景。在結構化工作場景中,機械臂抓取固定位置的物體,該模式需要進行大量調試和示教工作,機械臂只能按照預設程序進行工作,缺乏自主識別和決策能力,一旦目標物體發(fā)生形變或位置偏移,可能導致抓取失??;在非結構化場景中,通常為機械臂配備視覺感知硬件和目標檢測算法,以使機械臂能夠感知并理解相對復雜的抓取環(huán)境。然而,在實際復雜的抓取場景下(如散亂、堆疊、遮擋),常見的目標檢測方法如點云配準[4]、二維圖像實例分割[5]的精度有所下降,從而影響抓取效率[6]。


本文詳細內容請下載:

http://ihrv.cn/resource/share/2000006014


作者信息:

周劍

(蘇州深淺優(yōu)視智能科技有限公司,江蘇蘇州215124)


Magazine.Subscription.jpg

此內容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。