融合蛋白質(zhì)語言模型與深度神經(jīng)網(wǎng)絡(luò)的植物蛋白質(zhì)相互作用預(yù)測研究
電子技術(shù)應(yīng)用
古海博,王成鳳,金遠(yuǎn),池方愛,李顏娥
浙江農(nóng)林大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院
摘要: 預(yù)測植物中的蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)具有重要的生物學(xué)意義。同時采用了4種編碼方法及深度神經(jīng)網(wǎng)絡(luò)構(gòu)建了蛋白質(zhì)相互作用預(yù)測模型。結(jié)果表明,提出的融合蛋白質(zhì)語言模型Ankh與深度神經(jīng)網(wǎng)絡(luò)的方法構(gòu)建的PPI預(yù)測模型性能在3種植物數(shù)據(jù)集上均獲得了最優(yōu)的AUPR和AUC值,Sen及MCC值也均優(yōu)于其他4種蛋白質(zhì)相互作用預(yù)測模型。當(dāng)模型在水稻、大豆的植物PPI數(shù)據(jù)集上進(jìn)行測試時,所提出的模型AUPR值分別為0.802 5、0.730 1,AUC值分別為0.956 2、0.950 7。這些優(yōu)異的結(jié)果表明,融合蛋白質(zhì)語言模型Ankh的PPI模型可以作為植物蛋白質(zhì)相互作用預(yù)測的一個有前途的工具。
中圖分類號:TP399 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234794
中文引用格式: 古海博,王成鳳,金遠(yuǎn),等. 融合蛋白質(zhì)語言模型與深度神經(jīng)網(wǎng)絡(luò)的植物蛋白質(zhì)相互作用預(yù)測研究[J]. 電子技術(shù)應(yīng)用,2024,50(4):22-28.
英文引用格式: Gu Haibo,Wang Chengfeng,Jin Yuan,et al. Prediction of plant protein-protein interaction based on fusion of protein language model and deep neural network[J]. Application of Electronic Technique,2024,50(4):22-28.
中文引用格式: 古海博,王成鳳,金遠(yuǎn),等. 融合蛋白質(zhì)語言模型與深度神經(jīng)網(wǎng)絡(luò)的植物蛋白質(zhì)相互作用預(yù)測研究[J]. 電子技術(shù)應(yīng)用,2024,50(4):22-28.
英文引用格式: Gu Haibo,Wang Chengfeng,Jin Yuan,et al. Prediction of plant protein-protein interaction based on fusion of protein language model and deep neural network[J]. Application of Electronic Technique,2024,50(4):22-28.
Prediction of plant protein-protein interaction based on fusion of protein language model and deep neural network
Gu Haibo,Wang Chengfeng,Jin Yuan,Chi Fangai,Li Yan′e
College of Mathematics and Computer Science, Zhejiang A&F University
Abstract: Predicting protein-protein interaction (PPI) in plants holds significant biological implications. This study has employed four encoding methods and a deep neural network to construct a model for predicting protein interactions. The results show that the developed PPI prediction model using the integrated approach of the protein language model Ankh with a deep neural network has achieved optimal AUPR and AUC values across three plant datasets, with its Sen and MCC values also outperforming those of four other models designed for protein interaction predictions. When tested on plant PPI datasets for rice and soybean, the proposed model has yielded AUPR scores of 0.802 5 and 0.730 1 respectively, and AUC scores of 0.956 2 and 0.950 7 respectively. These outstanding results indicate that the PPI model incorporating the protein language model Ankh can serve as a promising tool for predicting protein-protein interactions in plants.
Key words : plant protein-protein interation;protein language model;deep neural network
引言
蛋白質(zhì)-蛋白質(zhì)相互作用(Protein-Protein Interaction,PPI)的研究可以為細(xì)胞生物學(xué)功能探索、育種干預(yù)等提供指導(dǎo),在生命科學(xué)和信息科學(xué)的發(fā)展中具有不可替代的作用[1]。因此,準(zhǔn)確預(yù)測蛋白質(zhì)之間的相互作用具有至關(guān)重要的作用[2]。
本文詳細(xì)內(nèi)容請下載:
http://ihrv.cn/resource/share/2000005943
作者信息:
古海博,王成鳳,金遠(yuǎn),池方愛,李顏娥
(浙江農(nóng)林大學(xué) 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,浙江 杭州 311300)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。