基于貝塞爾曲線的智能汽車避障軌跡規(guī)劃方法研究
電子技術(shù)應(yīng)用
曹昌盛1,曹昊天2
1.國電南瑞南京控制系統(tǒng)有限公司,江蘇 南京 210000;2.湖南大學(xué) 機械與運載工程學(xué)院,湖南 長沙 410082
摘要: 開展了一種基于貝塞爾曲線的智能汽車避障局部軌跡規(guī)劃,即路徑規(guī)劃和速度規(guī)劃方法研究。路徑規(guī)劃時,為了適應(yīng)各種形狀道路,將道路笛卡爾坐標(biāo)轉(zhuǎn)換為Frénet坐標(biāo),以路徑的長度、曲率和連續(xù)性,以及車輛碰撞風(fēng)險為代價函數(shù),其中引入危險勢場理論,描述車輛碰撞風(fēng)險,并采用序列二次規(guī)劃方法來求解路徑規(guī)劃這一非線性優(yōu)化問題;速度規(guī)劃時,以行車效率和舒適性為目標(biāo),實現(xiàn)速度規(guī)劃,該方法可以通過調(diào)整各子目標(biāo)函數(shù)的權(quán)重來滿足不同駕駛需求。為了驗證基于貝塞爾曲線軌跡規(guī)劃算法的有效性,設(shè)計了直道和彎道上靜態(tài)和動態(tài)避障場景的仿真實驗,結(jié)果表明,提出的軌跡規(guī)劃方法能夠在各種形狀道路上完成避障任務(wù),且避障過程中車輛狀態(tài)變化平穩(wěn),能夠保證乘坐舒適性。
中圖分類號:U461.91 文獻標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234472
中文引用格式: 曹昌盛,曹昊天. 基于貝塞爾曲線的智能汽車避障軌跡規(guī)劃方法研究[J]. 電子技術(shù)應(yīng)用,2024,50(2):17-22.
英文引用格式: Cao Changsheng,Cao Haotian. Research on trajectory planning method for intelligent vehicles with obstacle avoidance based on Bézier curve[J]. Application of Electronic Technique,2024,50(2):17-22.
中文引用格式: 曹昌盛,曹昊天. 基于貝塞爾曲線的智能汽車避障軌跡規(guī)劃方法研究[J]. 電子技術(shù)應(yīng)用,2024,50(2):17-22.
英文引用格式: Cao Changsheng,Cao Haotian. Research on trajectory planning method for intelligent vehicles with obstacle avoidance based on Bézier curve[J]. Application of Electronic Technique,2024,50(2):17-22.
Research on trajectory planning method for intelligent vehicles with obstacle avoidance based on Bézier curve
Cao Changsheng1,Cao Haotian2
1.NARI-TECH Nanjing Control Systems Ltd., Nanjing 210000, China; 2.College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
Abstract: In this paper, a Bézier curve-based trajectory planning method with obstacle avoidance for intelligent vehicles, namely path planning and speed planning, is studied. In path planning, in order to adapt to roads of various shapes, the Cartesian coordinates of roads are converted to Frénet coordinates. Taking path length, curvature, continuity and vehicle collision risk as the cost function, the dangerous potential field theory is introduced to describe the risk of vehicle collision, and the sequential quadratic programming method is adopted to solve this nonlinear optimization problem. In speed planning, aiming at driving efficiency and comfort, speed planning is realized, which can meet different driving needs by adjusting the weight of each sub-objective function.
Key words : intelligent vehicle;Bézier curve;danger potential field;obstacle avoidance;local trajectory planning
引言
近年來,智能汽車因其能夠提高通行效率并減少交通事故而受到研究人員的廣泛關(guān)注[1-2]。目前,百度、谷歌和特斯拉等公司在智能駕駛領(lǐng)域已經(jīng)取得了一些研究成果,并開始進行路測,但由于技術(shù)的復(fù)雜性和法規(guī)的限制,智能汽車離真正的商業(yè)化應(yīng)用還有一段距離[3]。智能汽車主要包括環(huán)境感知、行為決策、軌跡規(guī)劃和運動控制四大模塊,其中軌跡規(guī)劃作為智能汽車的核心技術(shù)也涌現(xiàn)了大量研究成果[1,4]。局部軌跡規(guī)劃是利用全局路徑信息和車載傳感器信息為智能汽車實時規(guī)劃安全舒適的行駛軌跡(包括參考路徑和速度)。
本文詳細(xì)內(nèi)容請下載:
http://ihrv.cn/resource/share/2000005849
作者信息:
曹昌盛1,曹昊天2
1.國電南瑞南京控制系統(tǒng)有限公司,江蘇 南京 210000;2.湖南大學(xué) 機械與運載工程學(xué)院,湖南 長沙 410082
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。