《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 设计应用 > 基于知识图谱技术的上市企业产业链风险预测
基于知识图谱技术的上市企业产业链风险预测
网络安全与数据治理 9期
董士豪,郑朗,王特,于晓娟,王耀君
(中国农业大学信息与电气工程学院,北京100038)
摘要: 随着产业互联网的飞速发展,面对海量的产业数据,构建知识图谱等自然语言处理应用需求逐渐增长。产业信息的有效管理和挖掘有助于及时发现所面临的风险和机遇,产业链风险预测可以为监管部门提供产业风险预警手段。针对以上问题,本文以知识图谱相关知识为科学依据,提出了基于知识图谱技术的产业文本数据实体标注准则,对海量上市公司产业信息进行知识抽取,形成自上而下的三维产业知识图谱。同时研究了上市企业产业知识图谱特定产业链知识的内在联系,总结规律并结合产业链往年时序图特征信息实现图谱推理,成功的对产业链中上市企业市值等信息进行了预测和分析。
中圖分類號(hào):F830
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.09.004
引用格式:董士豪,鄭朗,王特,等.基于知識(shí)圖譜技術(shù)的上市企業(yè)產(chǎn)業(yè)鏈風(fēng)險(xiǎn)預(yù)測(cè)[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(9):21-28.
Risk prediction of the industrial chain of listed enterprises based on knowledge graph technology
Dong Shihao,Zheng Lang,Wang Te,Yu Xiaojuan,Wang Yaojun
(College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)
Abstract: With the rapid development of the industrial Internet, the demand for natural language processing applications such as building knowledge graphs is gradually increasing in the face of massive industrial data. The effective management and mining of industrial information can help to discover the risks and opportunities faced in time, and the risk prediction of the industrial chain can provide regulatory authorities with early warning means for industrial risks. In view of the above problems, this paper takes the knowledge related to knowledge graph as the scientific basis, and puts forward the criteria for labeling industrial text data entities based on knowledge graph technology, extracts knowledge from massive listed companies′ industrial information, and forms a topdown threedimensional industrial knowledge map. At the same time, the intrinsic relationship of specific industrial chain knowledge of listed enterprises in the industrial knowledge graph is studied, the law is summarized, and the graph reasoning is realized by combining the characteristic information of the time series chart of the industrial chain in previous years, and the market value of listed enterprises in the industrial chain is successfully predicted and analyzed
Key words : knowledge graph; industry chain analysis; risk prediction; entity relationship callouts

0    引言

產(chǎn)業(yè)知識(shí)圖譜是結(jié)構(gòu)化的產(chǎn)業(yè)語(yǔ)義知識(shí)庫(kù),通過形式化描述產(chǎn)業(yè)領(lǐng)域的概念、實(shí)體、屬性及其相互關(guān)系,使概念、實(shí)體間相互聯(lián)結(jié),構(gòu)成網(wǎng)狀知識(shí)結(jié)構(gòu)。產(chǎn)業(yè)涉及范圍廣泛,本研究以產(chǎn)業(yè)大類中的上市企業(yè)、基金、上市企業(yè)業(yè)務(wù)鏈、產(chǎn)業(yè)鏈、基金經(jīng)理和股東等為研究對(duì)象,形成了知識(shí)覆蓋面廣、數(shù)據(jù)更新實(shí)時(shí)、精準(zhǔn)度高的自上到下的三維度產(chǎn)業(yè)知識(shí)圖譜。根據(jù)中國(guó)產(chǎn)業(yè)經(jīng)濟(jì)信息網(wǎng)和中國(guó)證券業(yè)協(xié)會(huì)規(guī)定的18大類產(chǎn)業(yè)為第一維度知識(shí);以上市企業(yè)、基金、基金經(jīng)理和股東組成的第二維度知識(shí);再到第三維度的公司業(yè)務(wù)鏈知識(shí),最終完成了產(chǎn)業(yè)知識(shí)圖譜的構(gòu)建。根據(jù)研究目標(biāo)及思路,下文確定了數(shù)據(jù)獲取方向和主要的獲取方法。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000005656




作者信息:

董士豪,鄭朗,王特,于曉娟,王耀君

(中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京100038)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。