基于超寬帶系統(tǒng)的雙卡爾曼濾波定位算法
電子技術(shù)應(yīng)用
劉倩蕓,林敏,劉灝,于澤,鄭立寅
(上海大學 通信與信息工程學院,上海 200444)
摘要: 針對室內(nèi)復(fù)雜通信環(huán)境中對于移動目標的循跡需求,設(shè)計了一種削弱非視距誤差的雙卡爾曼濾波器,將經(jīng)典卡爾曼濾波器與擴展卡爾曼濾波器進行級聯(lián),并引入一種根據(jù)殘差分區(qū)調(diào)整卡爾曼濾波器協(xié)方差的區(qū)分誤差方式,用于自適應(yīng)調(diào)整經(jīng)典卡爾曼濾波器的濾波增益,從而達到平滑觀測值的作用,最終在擴展卡爾曼濾波后輸出待測移動目標的位置信息,實現(xiàn)了移動目標的實時定位。在MATLAB上對該設(shè)計思路進行了仿真,在勻速運動模型下與現(xiàn)有的幾種算法進行了精度的比較,所提出的雙卡爾曼濾波器在仿真上能達到較高的循跡精度,均方根誤差在視距情況下達到3 cm以內(nèi),非視距情況下達到10 cm以內(nèi)。
中圖分類號:TN92
文獻標志碼:A
DOI:10.16157/j.issn.0258-7998.233797
中文引用格式: 劉倩蕓,林敏,劉灝,等. 基于超寬帶系統(tǒng)的雙卡爾曼濾波定位算法[J]. 電子技術(shù)應(yīng)用,2023,49(6):58-62.
英文引用格式: Liu Qianyun,Lin Min,Liu Hao,et al. A double-layer Kalman filter positioning algorithm based on ultra-wide band system[J]. Application of Electronic Technique,2023,49(6):58-62.
文獻標志碼:A
DOI:10.16157/j.issn.0258-7998.233797
中文引用格式: 劉倩蕓,林敏,劉灝,等. 基于超寬帶系統(tǒng)的雙卡爾曼濾波定位算法[J]. 電子技術(shù)應(yīng)用,2023,49(6):58-62.
英文引用格式: Liu Qianyun,Lin Min,Liu Hao,et al. A double-layer Kalman filter positioning algorithm based on ultra-wide band system[J]. Application of Electronic Technique,2023,49(6):58-62.
A double-layer Kalman filter positioning algorithm based on ultra-wide band system
Liu Qianyun,Lin Min,Liu Hao,Yu Ze,Zheng Liyin
(School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China)
Abstract: In order to track and locate the moving target in complex indoor environment, a double-layer Kalman filter (DKF) with weakening NLOS noises is designed, which cascades the classical Kalman filter (KF) and the Extended-Kalman filter (EKF). A method for distinguishing the noises is introduced into KF by adjusting the covariance according to the residual between the prediction and measurement. Through this method, the filter gain of KF is able to adjust adaptively, so that the distances measured by ultra-wide band (UWB) sensors can be smoothed and then input into the next EKF. Finally, the real-time positioning is achieved by outputting the position information of the moving target after EKF at each iteration. The algorithm is simulated on MATLAB, and the tracking accuracy is compared with several existing algorithms under the constant velocity (CV) model. The proposed DKF can achieve high accuracy within 3 cm in LOS environment and 10 cm in NLOS environment.
Key words : UWB;Kalman filter;indoor positioning;NLOS noises
0 引言
無線通信技術(shù)、網(wǎng)絡(luò)技術(shù)以及定位技術(shù)的不斷發(fā)展與普及,使基于位置的服務(wù)逐漸進入人們的生活中,成為了智慧生活和智能城市的重要組成部分。
在無線定位系統(tǒng)中,全球衛(wèi)星導(dǎo)航系統(tǒng)(Global Navigation Satellite System,GNSS) 已經(jīng)得到廣泛的應(yīng)用,技術(shù)也已經(jīng)相當成熟,其覆蓋范圍廣、準確度高、實時性好,在室外的定位精度可以達到10 m左右,這已經(jīng)較好解決了室外定位的需求。但是隨著社會現(xiàn)代化建設(shè)的發(fā)展,人們大多時間都生活或工作在如高樓大廈的室內(nèi)環(huán)境中。由于建筑物的內(nèi)部結(jié)構(gòu)復(fù)雜,會產(chǎn)生多徑效應(yīng)等影響室內(nèi)定位精度,無法進行準確且實時的定位。常見的室內(nèi)定位技術(shù)有低功耗藍牙(Bluetooth Low Energy, BLE)、WiFi、射頻識別(Radio Frequency Identification, RFID)、脈沖無線超寬帶(Impulse Radio Ultra-wide band, IR-UWB)等.
本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000005349
作者信息:
劉倩蕓,林敏,劉灝,于澤,鄭立寅
(上海大學 通信與信息工程學院,上海 200444)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。