《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 微波|射頻 > 設(shè)計(jì)應(yīng)用 > 基于形態(tài)學(xué)濾波和時(shí)頻譜圖對(duì)消的多跳頻信號(hào)參數(shù)估計(jì)
基于形態(tài)學(xué)濾波和時(shí)頻譜圖對(duì)消的多跳頻信號(hào)參數(shù)估計(jì)
2021年電子技術(shù)應(yīng)用第12期
劉佳敏1,趙知?jiǎng)?,2,葉學(xué)義1,王李軍2
1.杭州電子科技大學(xué) 通信工程學(xué)院,浙江 杭州310018; 2.中國電子科技集團(tuán)第36研究所 通信系統(tǒng)信息控制技術(shù)國家級(jí)重點(diǎn)實(shí)驗(yàn)室,浙江 嘉興314001
摘要: 針對(duì)復(fù)雜電磁環(huán)境下多跳頻信號(hào)的參數(shù)估計(jì)問題,提出一種基于多尺度形態(tài)學(xué)濾波和時(shí)頻譜圖對(duì)消的信號(hào)參數(shù)盲估計(jì)算法。首先根據(jù)跳頻信號(hào)、干擾和噪聲的時(shí)頻特征差異性,采用多尺度形態(tài)學(xué)濾波消除噪聲、突發(fā)和掃頻信號(hào),并利用譜圖對(duì)消法剔除定頻信號(hào);然后通過八連通域標(biāo)記獲取跳頻信號(hào)的位置信息,利用改進(jìn)的K-means聚類算法實(shí)現(xiàn)異速跳頻信號(hào)的分離;最后由各類簇參數(shù)估計(jì)多跳頻信號(hào)的周期、跳變時(shí)刻和跳頻頻率。仿真結(jié)果表明,與利用形態(tài)學(xué)濾波并提取時(shí)頻脊線的方法相比,該算法在低信噪比下具有更高的估計(jì)精度,且在定頻、跳頻信號(hào)發(fā)生頻率碰撞時(shí),仍能準(zhǔn)確估計(jì)跳頻參數(shù)。
中圖分類號(hào): TN914.41
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.211459
中文引用格式: 劉佳敏,趙知?jiǎng)?,葉學(xué)義,等. 基于形態(tài)學(xué)濾波和時(shí)頻譜圖對(duì)消的多跳頻信號(hào)參數(shù)估計(jì)[J].電子技術(shù)應(yīng)用,2021,47(12):83-88.
英文引用格式: Liu Jiamin,Zhao Zhijin,Ye Xueyi,et al. Morphological filtering and time-spectrogram cancellation based parameters estimation algorithm of multi FH signals[J]. Application of Electronic Technique,2021,47(12):83-88.
Morphological filtering and time-spectrogram cancellation based parameters estimation algorithm of multi FH signals
Liu Jiamin1,Zhao Zhijin1,2,Ye Xueyi1,Wang Lijun2
1.School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China; 2.State Key Lab of Information Control Technology in Communication System, The 36th Research Institute of China Electronics Technology Group Corporation,Jiaxing 314001,China
Abstract: Aiming at estimating the parameters of multi-frequency hopping signals in complex electromagnetic environment, a blind estimation algorithm of signals parameters based on multi-scale morphological filtering and time-spectrogram cancellation is proposed. Firstly, considering the characteristic differences of frequency hopping signals, interference signals and noise, multi-scale morphological filtering is used to eliminate the noise, frequency sweep signals and burst signals, the time-spectrogram cancellation is used to remove the fixed-frequency signals. Then the position information of the frequency hopping signals is obtained through the eight-connected domain mark, and then the all-speed frequency hopping signals are separated by the improved K-means clustering algorithm. Finally, the period, hopping time and frequency of multiple frequency hopping signals are estimated according to the parameters of each class cluster. The simulation results show that compared with the estimation algorithm that uses morphological filtering and extracts the time-frequency ridge, the proposed algorithm has higher estimation accuracy under low signal-to-noise ratio, and even though the frequency collision between frequency hopping signals and the fixed frequency signals occurs, the frequency hopping parameters can still be estimated accurately.
Key words : frequency hopping signal;parameter estimation;morphological filtering;time-spectrogram cancellation;clustering

0 引言

    跳頻信號(hào)因其具有較強(qiáng)的抗干擾、抗截獲和抗衰落等能力,被廣泛應(yīng)用于軍事通信[1]。跳頻信號(hào)參數(shù)估計(jì)是通信偵察的主要任務(wù)之一,隨著電磁環(huán)境的日益復(fù)雜,參數(shù)精確估計(jì)變得愈發(fā)困難。當(dāng)前,跳頻信號(hào)參數(shù)估計(jì)算法可分為非時(shí)頻分析法和時(shí)頻分析法兩大類,由于大多數(shù)非時(shí)頻分析法需要已知一些特定條件,且只能估計(jì)出跳頻信號(hào)的部分參數(shù),因此簡單直觀且無需先驗(yàn)信息的時(shí)頻分析法更適用于跳頻信號(hào)的參數(shù)盲估計(jì)。文獻(xiàn)[2]通過兩次短時(shí)傅里葉變換(Short-Time Fourier Transform,STFT)估計(jì)信號(hào)跳變時(shí)刻并利用多重信號(hào)分類算法進(jìn)行頻率估計(jì),具有較高估計(jì)精度,但無法兼顧時(shí)間和頻率分辨率。文獻(xiàn)[3]將STFT和平滑偽魏格納-威爾分布(Smoothed Pseudo Wigner-Ville Distribution,SPWVD)相結(jié)合,在提高時(shí)頻分辨率的同時(shí)抑制了交叉項(xiàng)干擾,但只適用于同步網(wǎng)臺(tái)的跳頻信號(hào)參數(shù)估計(jì),且部分參數(shù)估計(jì)精度受信號(hào)能量分布影響嚴(yán)重。文獻(xiàn)[4]~[8]通過提取跳頻信號(hào)時(shí)頻脊線進(jìn)行參數(shù)估計(jì),文獻(xiàn)[8]在文獻(xiàn)[7]的基礎(chǔ)上利用迭代法去噪和基于駐留時(shí)長的K-means聚類進(jìn)行參數(shù)估計(jì),提升了算法抗噪性能,但在定頻信號(hào)與跳頻信號(hào)發(fā)生頻率碰撞時(shí)算法失效。為了提升參數(shù)估計(jì)性能,文獻(xiàn)[9]~[12]在不同時(shí)頻變換的基礎(chǔ)上引入圖像處理技術(shù),采用形態(tài)學(xué)濾波對(duì)時(shí)頻圖像進(jìn)行處理后,提取時(shí)頻脊線完成跳頻信號(hào)的參數(shù)估計(jì),相比于直接提取時(shí)頻脊線的參數(shù)估計(jì)法,這些方法具有更高的精確度,但都僅針對(duì)單個(gè)跳頻信號(hào)的參數(shù)估計(jì)。文獻(xiàn)[2]~[11]僅考慮了存在高斯白噪聲或定頻信號(hào)的簡單電磁環(huán)境,而文獻(xiàn)[12]在較強(qiáng)干擾背景下算法性能發(fā)生惡化甚至失效。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003877




作者信息:

劉佳敏1,趙知?jiǎng)?,2,葉學(xué)義1,王李軍2

(1.杭州電子科技大學(xué) 通信工程學(xué)院,浙江 杭州310018;

2.中國電子科技集團(tuán)第36研究所 通信系統(tǒng)信息控制技術(shù)國家級(jí)重點(diǎn)實(shí)驗(yàn)室,浙江 嘉興314001)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。