基于高階圖卷積網(wǎng)絡(luò)的城市空氣質(zhì)量推斷模型
信息技術(shù)與網(wǎng)絡(luò)安全
陳 杰1,許鎮(zhèn)義1,2
(1.中國(guó)科學(xué)技術(shù)大學(xué) 自動(dòng)化系,安徽 合肥230026; 2.合肥綜合性國(guó)家科學(xué)中心人工智能研究院,安徽 合肥230088)
摘要: 能否精確地預(yù)測(cè)城市區(qū)域空氣質(zhì)量分布,對(duì)于政府環(huán)境治理以及人們?nèi)粘nA(yù)防等方面,具有重要的意義。該問題面臨的挑戰(zhàn)是:一是不同區(qū)域的空氣質(zhì)量分布具有時(shí)空交互性;二是空氣質(zhì)量分布受到外部因素的影響。通用化卷積神經(jīng)網(wǎng)絡(luò)以處理任意圖結(jié)構(gòu)數(shù)據(jù),成為近些年來研究的熱點(diǎn)之一,將城市空氣質(zhì)量預(yù)測(cè)問題可制定為時(shí)空?qǐng)D預(yù)測(cè)問題?;谔岢龅母唠A圖卷積網(wǎng)絡(luò),設(shè)計(jì)了一種有效的空氣質(zhì)量推斷模型。該模型可以捕獲空氣質(zhì)量分布的時(shí)空交互性和提取外部影響因素特征,從而精確預(yù)測(cè)空氣質(zhì)量分布。通過驗(yàn)證現(xiàn)實(shí)北京市空氣質(zhì)量數(shù)據(jù),結(jié)果表明提出的模型遠(yuǎn)遠(yuǎn)優(yōu)于目前已知的通用方法。
中圖分類號(hào): P41
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.006
引用格式: 陳杰,許鎮(zhèn)義. 基于高階圖卷積網(wǎng)絡(luò)的城市空氣質(zhì)量推斷模型[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(4):33-41,45.
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.006
引用格式: 陳杰,許鎮(zhèn)義. 基于高階圖卷積網(wǎng)絡(luò)的城市空氣質(zhì)量推斷模型[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(4):33-41,45.
A high-order graph convolutional network for urban air quality inference
Chen Jie1,Xu Zhenyi1,2
(1.Department of Automation,University of Science and Technology,Hefei 230026,China; 2.Institute of Artificial Intelligence,Hefei Comprehensive National Science Center,Hefei 230088,China)
Abstract: Whether it can accurately predict the air quality distribution is of great significance to the government′s environmental governance and people′s daily health prevention. This problem is challenging for the following reasons:(1)The air quality distribution in different regions has temporal and spatial interaction;(2)The air quality distribution is affected by external factors. In recent years,generalized convolutional neural network(CNN) is one of the research hotspots to process arbitrary graph structured data, so the fine-grained air quality forecasting problem in urban areas is formulated as an urban spatio-temporal graph prediction problem.Based on the proposed high-order graph convolution, we design an effective air quality inference model for inferring the air quality distribution, which could capture the spatio-temporal interaction of air quality distribution and extract external influential factor features. Through the verification of Beijing air quality data, experimental results show that proposed approach far outperforms known baseline methods.
Key words : air quality;spatial-temporal interaction;graph convolutional network;semi-supervised learning
0 引言
近年來,隨著經(jīng)濟(jì)的增長(zhǎng),環(huán)境問題也變得日益突出,大氣污染問題正受到前所未有的關(guān)注和重視[1]。城市空氣中,如一氧化碳(CO)、碳?xì)浠?HC)、氮氧化物(NOx)、固體顆粒物(PM2.5、PM10)等污染物濃度與人們的身體健康息息相關(guān)[2-3]。空氣質(zhì)量指數(shù)(Air Quality Index,AQI)是定量描述空氣質(zhì)量狀況的指數(shù),其數(shù)值越大說明空氣污染狀況越嚴(yán)重,對(duì)人體健康的危害也就越大[4]。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003475
作者信息:
陳 杰1,許鎮(zhèn)義1,2
(1.中國(guó)科學(xué)技術(shù)大學(xué) 自動(dòng)化系,安徽 合肥230026;
2.合肥綜合性國(guó)家科學(xué)中心人工智能研究院,安徽 合肥230088)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。