《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于HLS工具的CNN加速器的設(shè)計(jì)與優(yōu)化方法研究
基于HLS工具的CNN加速器的設(shè)計(jì)與優(yōu)化方法研究
2021年電子技術(shù)應(yīng)用第3期
程佳風(fēng),王紅亮
中北大學(xué) 電子測(cè)量技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山西 太原030051
摘要: 基于軟硬件協(xié)同設(shè)計(jì)的思想,利用HLS工具,在PYNQ-Z2平臺(tái)上設(shè)計(jì)并實(shí)現(xiàn)了一個(gè)卷積神經(jīng)網(wǎng)絡(luò)加速器,對(duì)卷積運(yùn)算采用矩陣切割的優(yōu)化方法,均衡了資源消耗和計(jì)算資源,使得加速器的性能達(dá)到了最優(yōu)。利用MNIST數(shù)據(jù)集對(duì)加速器IP核進(jìn)行性能測(cè)試,實(shí)驗(yàn)結(jié)果表明:對(duì)單張圖片的測(cè)試,該加速器相對(duì)于ARM平臺(tái)實(shí)現(xiàn)了5.785的加速效果,對(duì)于1 000張圖片的測(cè)試則可達(dá)到9.72的加速效果,隨著測(cè)試圖片數(shù)量的不斷增加,加速器的性能也將越來(lái)越優(yōu)。
中圖分類(lèi)號(hào): TN108.1
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200841
中文引用格式: 程佳風(fēng),王紅亮. 基于HLS工具的CNN加速器的設(shè)計(jì)與優(yōu)化方法研究[J].電子技術(shù)應(yīng)用,2021,47(3):18-21,26.
英文引用格式: Cheng Jiafeng,Wang Hongliang. Research on the design and optimization method of CNN accelerator based on HLS tools[J]. Application of Electronic Technique,2021,47(3):18-21,26.
Research on the design and optimization method of CNN accelerator based on HLS tools
Cheng Jiafeng,Wang Hongliang
National Key Laboratory for Electronic Measurement Technology,North University of China,Taiyuan 030051,China
Abstract: Based on the idea of software and hardware co-design, this article uses HLS tools to design and implement a convolutional neural network accelerator on the PYNQ-Z2 platform, and uses the matrix cutting optimization method for convolution operations to balance resource consumption and computing resources , so that the performance of the accelerator is optimized. This article uses the MNIST data set to test the performance of the accelerator IP core. The experimental results show that: for a single image test, the accelerator achieves an acceleration effect of 5.785 compared with the ARM platform, and an acceleration of 9.72 for a 1000 image test. As a result, as the number of test images continues to increase, the performance of the accelerator will become better and better.
Key words : convolutional neural network(CNN);PYNQ-Z2;HLS tool;accelerator

0 引言

    近年來(lái),卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用范圍越來(lái)越廣泛,其應(yīng)用場(chǎng)景也日益復(fù)雜,卷積神經(jīng)網(wǎng)絡(luò)的計(jì)算密集和存儲(chǔ)密集特征日益凸顯,成為快速高效實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)的限制。于是基于GPU[1]、ASIC[2]、FPGA[3]的不同的加速器平臺(tái)被相繼提出以提升CNN的設(shè)計(jì)性能。GPU的電力消耗巨大,硬件結(jié)構(gòu)固定,限制了卷積神經(jīng)網(wǎng)絡(luò)在嵌入式設(shè)備的應(yīng)用;ASIC開(kāi)發(fā)成本極高,靈活性低,不適合搭載復(fù)雜多變的卷積神經(jīng)網(wǎng)絡(luò);FPGA具有功耗低、性能高、靈活性好的特點(diǎn),因此更加適用于卷積神經(jīng)網(wǎng)絡(luò)硬件加速的開(kāi)發(fā)研究,但由于Verilog HDL開(kāi)發(fā)門(mén)檻高,開(kāi)發(fā)周期相對(duì)較長(zhǎng),影響了FPGA在卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用的普及[4-5]

    本文基于軟硬件協(xié)同的思想,利用HLS工具,在PYNQ-Z2上實(shí)現(xiàn)了一個(gè)卷積神經(jīng)網(wǎng)絡(luò)加速器,并采用矩陣切割的設(shè)計(jì)方法對(duì)卷積核運(yùn)算進(jìn)行優(yōu)化。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003402




作者信息:

程佳風(fēng),王紅亮

(中北大學(xué) 電子測(cè)量技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,山西 太原030051)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。