基于時空聚集的網(wǎng)貸反欺詐建模與研究
2020年信息技術(shù)與網(wǎng)絡(luò)安全第2期
俞旭峰1,王澎1,郭威2,張子柯1
(1.杭州師范大學(xué) 阿里巴巴復(fù)雜科學(xué)研究中心,浙江 杭州 311121; 2.阿里巴巴集團 新零售技術(shù)事業(yè)群,浙江 杭州 310008)
摘要: 識別突發(fā)的團伙欺詐已經(jīng)成為網(wǎng)貸業(yè)務(wù)中亟待解決的問題。在特征維度較少的情況下,提出了一種基于時空聚集的網(wǎng)貸反欺詐模型。首先基于用戶定位信息和申請貸款的時間,設(shè)計了一個適用于網(wǎng)貸場景下的聚集指標(biāo):KN最近鄰指數(shù);然后,將不同時間觀察窗口的K-N最近鄰指數(shù)利用基于LSTM(長短期記憶網(wǎng)絡(luò))的seq2seq(序列到序列)模型提取embedding(嵌入)特征;最后,利用LightGBM模型預(yù)測欺詐發(fā)生的概率。實驗結(jié)果表明,所提出的指標(biāo)能更有效地捕捉壞賬,且相比于僅使用基礎(chǔ)特征,預(yù)測結(jié)果的KS值和AUC都有了較好的提升。
中圖分類號:TP391
文獻標(biāo)識碼:A
DOI: 10.19358/j.issn.2096-5133.2020.02.013
引用格式:俞旭峰,王澎,郭威,等.基于時空聚集的網(wǎng)貸反欺詐建模與研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2020,39(2):69-74.
文獻標(biāo)識碼:A
DOI: 10.19358/j.issn.2096-5133.2020.02.013
引用格式:俞旭峰,王澎,郭威,等.基于時空聚集的網(wǎng)貸反欺詐建模與研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2020,39(2):69-74.
Anti-fraud modeling and research of online loans based on time and space aggregation
Yu Xufeng1, Wang Peng1, Guo Wei2, Zhang Zike1
(1.Alibaba Research Center for Complexity Sciences,Hangzhou Normal University,Hangzhou 311121,China; 2.New Retail Technology Business Group,Alibaba Group,Hangzhou 310008,China)
Abstract: The identification of sudden gang fraud has become an urgent problem in the online loan business.In the case of less feature dimensions,this paper proposes an anti-fraud model of online loans based on spatiotemporal aggregation.Firstly,based on the users′ location information and the time of applying for the loan,a clustering indicator suitable for the online loan business,K-N nearest neighbor index is designed;Then,the K-N nearest neighbor index of different time observation windows is used to extract embedding features from seq2seq (sequence to sequence) model based on LSTM (Long Short-Term Memory);Finally,the LightGBM model is used to predict the probability of fraud.The experimental results show that the proposed indicator can capture bad debts more effectively.Compared with only using the basic features,the KS value and AUC of the prediction result are better improved.
Key words : data mining;financial fraud identification;spatiotemporal data analysis;neighbor index;LSTM
0 引言
網(wǎng)貸具有以下3個重要的優(yōu)勢:高回報、覆蓋面廣、需求量大,所以最近幾年得到持續(xù)蓬勃發(fā)展。然而,網(wǎng)貸在給借貸者帶來便利、及時的金融服務(wù)的同時,也給放貸方帶來了欺詐者的攻擊威脅的風(fēng)險。首先,網(wǎng)貸主要是面向那些沒有抵押、在傳統(tǒng)信貸體系之外的借貸者;其次,網(wǎng)貸業(yè)務(wù)中個人數(shù)據(jù)較敏感,放貸方難以充分獲取用戶真實數(shù)據(jù),所以那些缺少較為全面的反欺詐風(fēng)控機制的放貸方面臨著重大損失的風(fēng)險。
本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000003164
作者信息:
俞旭峰1,王澎1,郭威2,張子柯1
(1.杭州師范大學(xué) 阿里巴巴復(fù)雜科學(xué)研究中心,浙江 杭州 311121;2.阿里巴巴集團 新零售技術(shù)事業(yè)群,浙江 杭州 310008)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。