基于时空聚集的网贷反欺诈建模与研究
2020年信息技术与网络安全第2期
俞旭峰1,王澎1,郭威2,张子柯1
(1.杭州师范大学 阿里巴巴复杂科学研究中心,浙江 杭州 311121; 2.阿里巴巴集团 新零售技术事业群,浙江 杭州 310008)
摘要: 识别突发的团伙欺诈已经成为网贷业务中亟待解决的问题。在特征维度较少的情况下,提出了一种基于时空聚集的网贷反欺诈模型。首先基于用户定位信息和申请贷款的时间,设计了一个适用于网贷场景下的聚集指标:KN最近邻指数;然后,将不同时间观察窗口的K-N最近邻指数利用基于LSTM(长短期记忆网络)的seq2seq(序列到序列)模型提取embedding(嵌入)特征;最后,利用LightGBM模型预测欺诈发生的概率。实验结果表明,所提出的指标能更有效地捕捉坏账,且相比于仅使用基础特征,预测结果的KS值和AUC都有了较好的提升。
中圖分類號:TP391
文獻標識碼:A
DOI: 10.19358/j.issn.2096-5133.2020.02.013
引用格式:俞旭峰,王澎,郭威,等.基于時空聚集的網(wǎng)貸反欺詐建模與研究[J].信息技術與網(wǎng)絡安全,2020,39(2):69-74.
文獻標識碼:A
DOI: 10.19358/j.issn.2096-5133.2020.02.013
引用格式:俞旭峰,王澎,郭威,等.基于時空聚集的網(wǎng)貸反欺詐建模與研究[J].信息技術與網(wǎng)絡安全,2020,39(2):69-74.
Anti-fraud modeling and research of online loans based on time and space aggregation
Yu Xufeng1, Wang Peng1, Guo Wei2, Zhang Zike1
(1.Alibaba Research Center for Complexity Sciences,Hangzhou Normal University,Hangzhou 311121,China; 2.New Retail Technology Business Group,Alibaba Group,Hangzhou 310008,China)
Abstract: The identification of sudden gang fraud has become an urgent problem in the online loan business.In the case of less feature dimensions,this paper proposes an anti-fraud model of online loans based on spatiotemporal aggregation.Firstly,based on the users′ location information and the time of applying for the loan,a clustering indicator suitable for the online loan business,K-N nearest neighbor index is designed;Then,the K-N nearest neighbor index of different time observation windows is used to extract embedding features from seq2seq (sequence to sequence) model based on LSTM (Long Short-Term Memory);Finally,the LightGBM model is used to predict the probability of fraud.The experimental results show that the proposed indicator can capture bad debts more effectively.Compared with only using the basic features,the KS value and AUC of the prediction result are better improved.
Key words : data mining;financial fraud identification;spatiotemporal data analysis;neighbor index;LSTM
0 引言
網(wǎng)貸具有以下3個重要的優(yōu)勢:高回報、覆蓋面廣、需求量大,所以最近幾年得到持續(xù)蓬勃發(fā)展。然而,網(wǎng)貸在給借貸者帶來便利、及時的金融服務的同時,也給放貸方帶來了欺詐者的攻擊威脅的風險。首先,網(wǎng)貸主要是面向那些沒有抵押、在傳統(tǒng)信貸體系之外的借貸者;其次,網(wǎng)貸業(yè)務中個人數(shù)據(jù)較敏感,放貸方難以充分獲取用戶真實數(shù)據(jù),所以那些缺少較為全面的反欺詐風控機制的放貸方面臨著重大損失的風險。
本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000003164
作者信息:
俞旭峰1,王澎1,郭威2,張子柯1
(1.杭州師范大學 阿里巴巴復雜科學研究中心,浙江 杭州 311121;2.阿里巴巴集團 新零售技術事業(yè)群,浙江 杭州 310008)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。
