隨著AI技術(shù)的發(fā)展,“個性化醫(yī)療”在近年來頻頻被提起,“個性化”象征的“精準(zhǔn)”“高效”“智慧”使其成為改變醫(yī)療行業(yè)現(xiàn)狀的有效切入點(diǎn)。比如智能導(dǎo)診與患者實(shí)現(xiàn)互動,智能監(jiān)測設(shè)備幫助進(jìn)行醫(yī)療服務(wù)的追蹤和個性化定制等。那么,個性化醫(yī)療只能被AI+醫(yī)療產(chǎn)品定義嗎?恐怕不然。今天,智能相對論(aixdlun)就想跟大家聊聊另一層意義上的個性化醫(yī)療技術(shù)——“器官芯片”。
化整為零,真正的“個性化”醫(yī)療
說起個性化醫(yī)療,我們腦海中首先想到的就是基因醫(yī)療,也就是以個人基因組信息為基礎(chǔ),結(jié)合相關(guān)內(nèi)環(huán)境信息,為病人量身設(shè)計(jì)出最佳治療方案的一種定制醫(yī)療模式。
基因檢測和治療固然能為個性化醫(yī)療提供基礎(chǔ),目前也有通過基因檢測發(fā)現(xiàn)癌癥、糖尿病,進(jìn)而采取精準(zhǔn)醫(yī)療手段延緩病情的案例,但是,從基因醫(yī)療的發(fā)展進(jìn)程來看,除少數(shù)疾病外,基因與疾病的關(guān)聯(lián)性難以確定,比如“漸凍癥”(ALS),數(shù)據(jù)顯示,僅有少部分ALS與基因缺陷相關(guān),而90%的散發(fā)性案例發(fā)病原因仍是未解之謎。
所以,將人體的整個基因程序列入個性化醫(yī)療的參考之列,其實(shí)是不太靠譜的。這時,器官芯片的出現(xiàn)給了人們新的參考指標(biāo)。
“器官芯片”這個概念由來已久,在2016年就被達(dá)沃斯論壇列為“十大新興技術(shù)”之一。根據(jù)中國科學(xué)院院刊的說法,器官芯片,指的是一種在芯片上構(gòu)建的器官生理微系統(tǒng),它以微流控芯片為核心,通過與細(xì)胞生物學(xué)、生物材料和工程學(xué)等多種方法相結(jié)合,可以在體外模擬構(gòu)建包含有多種活體細(xì)胞、功能組織界面、生物流體和機(jī)械力刺激等復(fù)雜因素的組織器官微環(huán)境,,反映人體組織器官的主要結(jié)構(gòu)和功能體征。
簡單來說,就是在體外構(gòu)建一個人體內(nèi)生物學(xué)組織器官的簡化版本,只保留器官功能和人體病理生物學(xué)的特征?!捌鞴傩酒庇趥€性化醫(yī)療的意義在于,將人體化整為零,把對“人體”精確的診斷改換成對“器官”的精確診斷,提供更有效、更有針對性的治療。
通過利用患者來源干細(xì)胞,實(shí)現(xiàn)誘導(dǎo)多能干細(xì)胞來源器官模型的工程化構(gòu)建,使個體化的疾病風(fēng)險(xiǎn)預(yù)測、藥物藥效評價、毒理評估和預(yù)后分析更加準(zhǔn)確。目前,也有科學(xué)家利用特定病人的干細(xì)胞,構(gòu)建功能性心臟組織,模擬累遺傳性心臟病模型。
除了實(shí)現(xiàn)對人類的個性化醫(yī)療,器官芯片還有一個明顯的好處,便是藥物測試。這一點(diǎn),對動物試驗(yàn)的改變將是革命性的。
一直以來,人們都是通過動物來試藥,暫且不論用動物做藥物測試是否人道。從實(shí)驗(yàn)準(zhǔn)確性的角度來講,盡管動物與人類共享的基因比例高達(dá)99%,但剩下的1%,仍然會造成極大的變量,從而導(dǎo)致兩個物種之間產(chǎn)生巨大的生理差異。同一種藥物,在動物體內(nèi)和人體內(nèi)的反應(yīng)可能是截然不同的。即便是極小的表達(dá)差異,也會隨著藥物研發(fā)進(jìn)程的推進(jìn)而被不斷放大,最終導(dǎo)致整個項(xiàng)目的失敗。
“器官芯片”因?yàn)楦咏梭w,能夠更加有效地用于藥物測試,10月11日,《科學(xué)進(jìn)展》上就報(bào)告了一種在微流控芯片上制作神經(jīng)元和肌肉組織的3D方法,借助這種芯片,科學(xué)家可以替“漸凍人”試新藥。
仿真性、成本、連接……器官芯片要面臨的問題
器官芯片的概念提出已久,產(chǎn)業(yè)化的進(jìn)程卻十分緩慢,探究其中原因,大致可以分為三點(diǎn)。
首先,即使是最先進(jìn)的器官芯片,也無法完全代表活體器官的功能。畢竟,所有的器官都不可能脫離機(jī)體單獨(dú)存在。雖然化整為零具有建設(shè)性的意義,但整體大于部分,僅依靠器官芯片是無法復(fù)制疾病機(jī)體的,尤其是內(nèi)分泌環(huán)境所導(dǎo)致一系列功能變化。
因此,我們必須考慮人體這個整體的關(guān)聯(lián)性,在這方面,我們可以利用單個芯片組成一個高集成度的3D組織器官微流控芯片系統(tǒng)。大連理工大學(xué)的研究團(tuán)隊(duì)就研發(fā)出了這樣的芯片系統(tǒng),該芯片系統(tǒng)由多種模塊自上而下依次疊加構(gòu)成,集成了腸、血管、肝、腫瘤、心、肺、肌肉和腎等細(xì)胞或組織,并有“消化液”,“血液”和“尿液”貫穿其中。如此,器官芯片就像一個積木,將所有的積木堆積起來,就能最大程度地打造一個“人體建筑”,還原人體內(nèi)功能環(huán)境,并實(shí)現(xiàn)藥物測試等作用。
其次,器官芯片仍是一個成長中的技術(shù),產(chǎn)業(yè)鏈的不成熟將導(dǎo)致成本增加。Oxford的CNBio公司用裝有12個微型肝臟的芯片做藥物的毒性試驗(yàn),目前一個單元的價格是22000,單位是美元。事實(shí)上,這個價格比起動物試驗(yàn)已經(jīng)低廉很多,要知道,做同樣的試驗(yàn),小鼠的價格為$50000美元。
但是,這所謂的“低廉”放在產(chǎn)業(yè)化進(jìn)程中,依舊是要打上問號的。目前來看,器官芯片在科研上使用居多,而科研經(jīng)費(fèi)也足夠支撐該類工具的使用,但我們對器官芯片更大的希冀是落地于普通人的醫(yī)療,如果器官芯片要走向產(chǎn)業(yè)化,仍需要控制成本。當(dāng)然,隨著產(chǎn)業(yè)鏈的完善,其優(yōu)勢會慢慢凸顯出來,成本問題也會得到相應(yīng)的解決。
在此之前,我們或許可以將3D打印技術(shù)作為器官芯片制作方法的重要補(bǔ)充。3D打印技術(shù)至少會在兩個方面對器官芯片造成影響,一是芯片制備,二是生物打印。尤其在芯片制備上,3D打印已經(jīng)能夠制造出有很高分辨率,結(jié)構(gòu)復(fù)雜的芯片,還具備制作周期短,單元操作簡單、成本低廉的優(yōu)點(diǎn),哈佛大學(xué)Wyss生物工程研究所和哈佛JohnA.Paulson工程和應(yīng)用科學(xué)院的研究人員就利用3D打印制造出了首個完整的帶集成傳感系統(tǒng)的器官芯片。
最后,微流控芯片普遍存在有一個問題,即宏觀試樣與微芯片的銜接不易。目前,芯片上的進(jìn)樣多采用手工完成,效率低下,可靠性也較差,極容易影響細(xì)胞的活力,進(jìn)而影響細(xì)胞進(jìn)程和生物特征的實(shí)時檢測,因此,我們還需要研發(fā)出更多的協(xié)助性產(chǎn)品,比如連續(xù)進(jìn)樣系統(tǒng),保證在制備上做到自動化、微型化和集成化。
結(jié)論:
個性化醫(yī)療發(fā)展至今,已經(jīng)積累了許多的技術(shù)成果。隨著技術(shù)的不斷發(fā)展,我們對“個性化”“精準(zhǔn)”也提出了更多的要求,器官芯片之于人類的意義,在于人們可以真正地“對癥下藥”,而不去“損傷”其他的組織器官。隨著人們研究的深入,器官芯片技術(shù)必將廣泛應(yīng)用于生命科學(xué)、醫(yī)學(xué)、藥學(xué)等領(lǐng)域的研究中,為個性化醫(yī)療帶來更多可能。