如何快速解決RSM隔離模塊應(yīng)用問題
RS-485總線優(yōu)點(diǎn)眾所皆知,并且為保證通信的穩(wěn)定性,都會(huì)使用隔離RS-485模塊進(jìn)行信號(hào)隔離。但在RS-485實(shí)際組網(wǎng)時(shí),或多或少會(huì)遇到不能通信、通信出錯(cuò)、RS-485收發(fā)器損壞等情況,其中究竟為何?本文將深度剖析RS-485組網(wǎng)問題。
1、應(yīng)用問題;
當(dāng)出現(xiàn)通信錯(cuò)誤或者不能通信時(shí)首先判斷應(yīng)用是否符合表 1中的應(yīng)用情況。
表 1 RS-485總線應(yīng)用情況
表 1中三種應(yīng)用情況分別屬于終端電阻、上下拉電阻、控制腳以及邏輯輸入側(cè)電平的問題,下面對(duì)其進(jìn)行詳細(xì)分析。
1)終端電阻問題
若RS-485總線上接有終端電阻,且所用RS-485收發(fā)器門限電平是±200mV,則可能出現(xiàn)表 2中所述的異常現(xiàn)象。
表 2 終端電阻導(dǎo)致的異常現(xiàn)象
圖 1 RS232/485雙向轉(zhuǎn)換器
終端電阻導(dǎo)致異常的原因:RS-485收發(fā)器接收門限電平為±200mV,即AB之間差分電壓大于+200mV,輸出高電平;AB之間差分電壓小于-200mV,輸出低電平;AB之間電壓在±200mV之間時(shí),輸出狀態(tài)不確定,即有可能輸出高電平(此時(shí)表現(xiàn)為通信正常),有可能輸出低電平(此時(shí)表現(xiàn)為通信異常),因此若總線空閑狀態(tài)時(shí)AB差分電壓處于門限電平之內(nèi),則會(huì)出現(xiàn)一定概率的異常問題。
表 2現(xiàn)象1分析:單板可以正常通信,組網(wǎng)后由于RS-485總線上接有終端電阻,導(dǎo)致空閑狀態(tài)時(shí)總線差分電壓處于門限電平之內(nèi),出現(xiàn)通信異常。當(dāng)出現(xiàn)上述情況時(shí),首先需確認(rèn)總線上是否存在終端電阻。
表 2現(xiàn)象2分析:單板測試時(shí),單板或與之通信的設(shè)備接有終端電阻,此時(shí)AB之間差分電壓處于門限電平之內(nèi)時(shí),有一定概率出現(xiàn)通信異常。
表 2現(xiàn)象3分析:此現(xiàn)象同樣是由于終端電阻導(dǎo)致的,由于RS-232/485雙向轉(zhuǎn)換器(如圖 1)內(nèi)部AB引腳一般會(huì)設(shè)置小阻值的上下拉 電阻(例如560Ω),若用RS-232/485雙向轉(zhuǎn)換器通信,由于RS-485總線空閑狀態(tài)時(shí)的電壓是由上下拉電阻與終端電阻分壓得到,此時(shí)空閑狀態(tài)的AB差分電壓會(huì)大于200mV,使RS-485收發(fā)器輸出一個(gè)確定的高電平,不會(huì)引起通信錯(cuò)誤,如圖 3為兩個(gè)RSM485PCHT進(jìn)行通信,AB之間加60Ω并且增加RS-232/485雙向轉(zhuǎn)換器的測試波形,空閑狀態(tài)的電壓為520mV,不會(huì)引起錯(cuò)誤。圖2為兩個(gè)RSM485PCHT進(jìn)行通信,AB之間加60Ω測試的波形,可以看出空閑狀態(tài)AB差分電壓為40mV,處于門限電平范圍之內(nèi),有可能出現(xiàn)通信錯(cuò)誤。
圖 2 AB間加兩個(gè)120Ω電阻,并增加RS-232/485雙向轉(zhuǎn)換器
圖 3 AB間只加兩個(gè)120Ω電阻
解決方法主要有三種,具體如表 3:
表 3 終端電阻問題解決方法
2)上下拉電阻問題
上下拉電阻并聯(lián)值過小可能引起的現(xiàn)象如表 4所示。
表 4 上下拉電阻導(dǎo)致的異?,F(xiàn)象
上述問題是所加上下拉電阻值較小導(dǎo)致的問題,超過了芯片可以驅(qū)動(dòng)的負(fù)載能力。RSM485PCHT在AB之間加兩個(gè)120Ω電阻后,所加上下拉電阻值與輸出差分電壓低電平的關(guān)系如表 5所示,當(dāng)上下拉電阻并聯(lián)值小于51Ω時(shí),雖然芯片可以正常輸出,但是輸出信號(hào)已大于-200mV,此時(shí)可能出現(xiàn)通信錯(cuò)誤或完全不能通信。上下拉電阻過小會(huì)導(dǎo)致RS-485收發(fā)器在功耗過大,發(fā)熱嚴(yán)重,有可能導(dǎo)致收發(fā)器過熱保護(hù)或者損壞,因此為了保證通信的可靠性,上下拉電阻阻值不宜過小,一般上拉或下拉電阻的并聯(lián)值應(yīng)大于375Ω。
表 5 不同上下拉電阻值驅(qū)動(dòng)電壓
3)控制腳以及邏輯輸入側(cè)的問題
由于收發(fā)切換需要一定的延時(shí),因此應(yīng)在發(fā)送或者接收數(shù)據(jù)前增加一段延時(shí)(例如RSM485PCHT,需要增加至少25μs)來保證RS-485收發(fā)器已經(jīng)處于發(fā)送或者接收狀態(tài)。
MCU電平應(yīng)與RS-485收發(fā)器輸入邏輯電平匹配,即MCU為5V邏輯電平,應(yīng)使用供電為5V的RSM系列隔離模塊。
2、波形測試方法;
由于RS-485總線應(yīng)用非常廣泛,應(yīng)用問題不僅僅只是上面幾種,當(dāng)排除上面的問題后,可以通過測試總線波形的方法來找到通信異常的位置,判斷異常原因。
1)檢查RS-485收發(fā)器發(fā)送功能
在通信異常時(shí),測量RS-485總線AB差分電壓與模塊TXD、RXD引腳之間波形的對(duì)應(yīng)關(guān)系可以判斷異常位置。使用圖 4所示的測試方法得到如圖 5所示波形,TXD為高電平時(shí),A-B為高電平,TXD為低電平時(shí),A-B為低電平,并且模塊輸出電平正常,可以判斷出模塊發(fā)送功能正常。
圖 4 測試發(fā)送功能是否正常
圖 5 發(fā)送功能測試正常波形
2)檢查RS-485收發(fā)器接收功能
使用圖 6所示的測試方法得到如圖 7所示波形,A-B為高電平時(shí),RXD為高電平,A-B為低電平時(shí),RXD為低電平,并且模塊RXD輸出電平正常,可以判斷模塊接收功能正常。
圖 6 測試接收功能是否正常
圖 7 接收功能測試正常波形
3)檢查RS-485收發(fā)器控制引腳與TXD、RXD邏輯關(guān)系
使用如
圖 8所示的方法分別測試TXD、RXD與CON邏輯關(guān)系,得到圖 9和圖 10所示波形,對(duì)于RSM485PCHT,發(fā)送或接收信號(hào)前,CON引腳應(yīng)至少提前25μs置為低電平或高電平,并且數(shù)據(jù)發(fā)送或接收完成后再切換收發(fā)狀態(tài)。
圖 8 TXD與CON測試
圖 9 發(fā)送數(shù)據(jù)CON波形
圖 10 接收數(shù)據(jù)CON波形
3、收發(fā)器損壞
1)模塊AB引腳超過共模電壓范圍導(dǎo)致的損壞
RS-485收發(fā)器AB引腳的共模電壓范圍一般要求在-7V~+12V范圍內(nèi),當(dāng)超過此范圍內(nèi)時(shí)會(huì)造成芯片損壞。由于工業(yè)現(xiàn)場大地經(jīng)常會(huì)流過瞬時(shí)大電流,若收發(fā)器RGND引腳連接不當(dāng),則AB引腳的共模電壓會(huì)超過其可承受的共模電壓范圍,導(dǎo)致模塊損壞。下面以RSM485PCHT為例進(jìn)行分析。
圖 11 RGND多點(diǎn)接大地示意圖(錯(cuò)誤連接)
當(dāng)U1發(fā)送高電平時(shí),以RSM485PCHT為例
由于兩個(gè)模塊都直接連接至機(jī)殼或者大地,當(dāng)機(jī)殼或大地中通過較大電流時(shí),在U1和U2的RGND引腳之間產(chǎn)生了VEARTH電壓差,當(dāng)U1向U2發(fā)送數(shù)據(jù)時(shí),U2的A引腳的電壓為
由于VA1發(fā)送時(shí)為5V,當(dāng)VEARTH超過7V時(shí)就有可能導(dǎo)致?lián)p壞,因此在實(shí)際應(yīng)用中,節(jié)點(diǎn)之間的RGND可以通過屏蔽雙絞線的屏蔽層進(jìn)行連接,屏蔽層通過阻容單點(diǎn)連接至大地,如圖 12所示。
圖 12 RGND推薦連接
2)高等級(jí)的靜電和浪涌造成模塊損壞
在應(yīng)用環(huán)境中有較高等級(jí)的靜電和浪涌時(shí),如果只是單純使用RS-485收發(fā)器芯片或者模塊,可能會(huì)導(dǎo)致模塊損壞,此時(shí)就需要增加外圍保護(hù)電路來保護(hù)收發(fā)器。但保護(hù)電路需要可靠地接地才能將靜電和浪涌能量泄放。下面以進(jìn)行共模浪涌測試為例,如圖 13所示,若保護(hù)電路未連接至大地,則浪涌能量(紅色部分)通過隔離模塊進(jìn)行釋放,較高的浪涌等級(jí)容易導(dǎo)致模塊損壞;當(dāng)保護(hù)電路接大地時(shí),如圖 14所示,浪涌能量首先通過GDT泄放到大地,然后通過TVS和電容泄放,剩余很少的能量才會(huì)通過模塊釋放,可以起到保護(hù)的作用。
圖 13 保護(hù)電路未接大地
圖 14 保護(hù)電路接大地