二極管以其單向?qū)щ娞匦裕?a class="innerlink" href="http://ihrv.cn/tags/整流開關" title="整流開關" target="_blank">整流開關方面發(fā)揮著重要的作用;其在反向擊穿狀態(tài)下,在一定電流范圍下起到穩(wěn)壓效果。令人意外的是,利用二極管的反偏壓結(jié)電容,能夠有效地減少信號線上的接入寄生電容,這里將近一步討論這個運用。
上次我們分享了關于“如何妙用二極管的導通壓降”的知識,之后有用戶要求了解更多有關電子類器件的知識,這里就來講講“如何妙用二極管減少寄生電容”。
二極管參數(shù)—單向?qū)щ娦?/p>
提到二極管,大家最熟悉的就是二極管的單向?qū)щ娦?,反映伏安曲線上如圖1所示。當正向偏壓U=0.5V(硅管)時,二極管開始導通,電流越大電壓越大,具有很低阻抗;當加反向偏壓時二極管不導通,在一定范圍內(nèi)有很小的漏電流,具有很大阻抗。其這個單向?qū)щ娦?,也起到了開關的作用,所以在整流和開關方面都有廣泛的應用。
圖1 二極管伏安特性曲線
二極管有一個參數(shù),沒有單向?qū)щ娦阅敲磸V為人知,但是對電路設計的影響也至關重要,那就是“結(jié)電容”。
二極管參數(shù)—結(jié)電容
在一些高速場合,需要選結(jié)電容比較小的二極管;在某些場合,則需要利用這個結(jié)電容來達到特定的目的,比如壓控振蕩器(VCO),正是利用了變?nèi)荻O管在不同的反向偏壓下有不同的電容值,從而達到電壓控制頻率的目的。
圖2 壓控振蕩器應用電路-實例
在高速電路上,由于頻率越來越高,寄生電容的影響已經(jīng)不能忽視了。在系統(tǒng)中,這些不期望的電容來自方方面面,比如PCB的材質(zhì)、厚度、板層結(jié)構(gòu)、走線平行度,這些都是影響PCB板的寄生電容,還有元器件本身的寄生電容,最可惡的是這些東西還受環(huán)境溫度的影響。
圖3 寄生電容引起“振鈴”
難道就沒辦法對付它們了嗎?通過工程師們的不懈努力,發(fā)現(xiàn)這些影響是可以通過合理的電路設計來減少的。下面我們將討論下怎樣“利用二極管的電容特性來減小高速信號上的寄生電容”。
二極管妙用—減少寄生電容
首先,我們熟悉下二極管的電容特性:圖4所示的是IN4448HWS二極管的電容特性。零反向偏壓下,電容是3pF,隨著反向偏壓越來越大,結(jié)電容越來越小。
圖4 電容特性
在高速信號線上,通常會附加一些功能,這些功能通常會帶來不利的影響,如會產(chǎn)生很大的寄生電容,這個電容視具體的電路模塊而定。如果忽略這個電容,可能會影響這個信號的頻率。最不幸的是,就算您注意到了這個電容,由于附加的功能模塊產(chǎn)生的電容太大,似乎也無能為力。通用附件功能接入法如圖5所示:
圖5 通用附件功能接入法
為了減少信號線上的寄生電容,可以在附件功能的接入點處增加一個二極管,這個二極管必須節(jié)電容比較小的,通常選用小信號開關管,如果考慮到大電流問題,則需要慎重考慮選型問題。
圖6 正向接入法
正向接入方法如圖6所示,二極管接在信號線與附件功能模塊之間,這表示附加功能模塊使能時是高電平輸出的。另外,為了更大程度地減小寄生電容,通常使二極管工作在反偏壓狀態(tài)下,即UL 接至低電平。在附加功能模塊不工作,二極管處于最大反偏壓下,具有更小的節(jié)電容,信號線能夠工作在高頻狀態(tài)下,系統(tǒng)獲得更高的性能。
圖7 反向接入法
反向接入方法如圖7所示,與正向接入不同的是,二極管的正極接到信號線上,UH接至高電平。
不管正向還是反向接入法,其等效電路都如圖8所示。我們假設二極管的節(jié)電容為3pF,附件功能模塊寄生總電容1uF。如果電阻足夠大,那么可以忽略,此時就是兩個電容串聯(lián),和電阻并聯(lián)類似,CT=C1*C2/(C1+C2)≈C1(C2較大)。大電容就算變化很大,串聯(lián)總電容幾乎等于小電容,即3pF,有效減小接入電容。
圖8 等效電路
以上運用是建立在二極管單向?qū)щ娦院洼^小節(jié)電容的基礎上。正向接入和反向接入只能是單方向的,不能解決所有情況,也就是說只能針對特殊的功能模塊。如果附加功能模塊需要雙向的,把圖6和圖7結(jié)合或許是不錯的選擇。