《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 業(yè)界動態(tài) > EMI 很低的高壓充電泵

EMI 很低的高壓充電泵

2017-02-15
關鍵詞: 充電泵 電荷泵

開關穩(wěn)壓器由于尺寸、輸出靈活性和效率優(yōu)勢,成為很多電源轉換電路的流行選擇。視運行條件的不同而不同,這類電源的轉換效率現(xiàn)在可以達到 98% 的水平。然而,盡管有這些優(yōu)勢,這類電源必須在其他參數(shù)上做出妥協(xié),其中最難的一個就是噪聲。

不過,什么是開關穩(wěn)壓器的“噪聲”? 為了更好地理解這個術語,讓我們從開關模式電源產生寬帶諧波能量這一事實入手。這種人們不想要的能量以兩種形式出現(xiàn),即輻射和傳導,在業(yè)界,它們通常被稱為“噪聲”。然而,這個名稱確實不夠準確,因為開關穩(wěn)壓器的輸出“噪聲”根本就不是噪聲,而是直接與穩(wěn)壓器的開關切換有關的、自然而然剩余的高頻分量。這種現(xiàn)象的正確叫法是電磁輻射,或者更常見的叫法是 EMI。而且,確實,EMI 有輻射和傳導兩種形式。

既然在很多電路應用中,要實現(xiàn)最佳性能,無噪聲、良好穩(wěn)壓的電源非常重要,那么能夠降低在這種轉換過程必然存在的噪聲也就非常重要了。降低噪聲的一種顯然方式是使用線性穩(wěn)壓器。然而,盡管線性穩(wěn)壓器提供噪聲很低的電源軌,但是在高降壓比時,其轉換效率不佳,這在大輸出電流應用中,可能導致設計出現(xiàn)熱量問題。

相應地,開關穩(wěn)壓器通常比線性穩(wěn)壓器的轉換效率高,因此當最終應用需要大輸出電流時,開關穩(wěn)壓器的熱量設計會更簡單。人們能夠很好地理解,在決定幾乎所有電源成敗時,組件選擇和電路板布局發(fā)揮了非常重要的作用。這些方面決定了運行時的 EMI 和熱量表現(xiàn)。對外行而言,開關電源布局也許看似魔法,但實際上,在設計初期,這常常是被忽視的一個基本方面。既然總是必須滿足運行時的 EMI 要求,那么對電源運行穩(wěn)定性有好處的事,通常對降低 EMI 輻射也是有好處的。此外,從一開始就確定一個良好的布局,不會給設計增加任何成本,而且實際上,由于無需 EMI 濾波器、機械屏蔽、EMI 測試時間和無數(shù)次修改電路板,因此還有可能節(jié)省了成本。

另外,在一個設計中采用多個開關模式 DC/DC 穩(wěn)壓器以產生多個軌時,如果這些穩(wěn)壓器并聯(lián),以均分電流并提供更大的輸出功率,那就有可能加重噪聲引起的潛在干擾問題。如果所有穩(wěn)壓器都以一個相似的頻率運行 (切換),那么電路中多個穩(wěn)壓器合起來產生的能量就有可能集中在一個頻率附近。這種能量的存在可能會成問題,尤其是如果印刷電路板 (PCB) 上其余 IC 以及其他系統(tǒng)電路板相互靠得很近而易于受到這種輻射能量影響時。在工業(yè)和汽車系統(tǒng)中,這尤其有可能造成麻煩,因為這類系統(tǒng)都是密集排列的,而且非??拷娫肼曉矗鐧C械切換的電感性負載、PWM 驅動功率輸出、微處理器時鐘和觸點切換。此外,如果以不同頻率切換,那么互調分量有可能混疊到敏感頻段中。

開關穩(wěn)壓器輻射

在工業(yè)、醫(yī)療和汽車環(huán)境中,散熱少、效率高對應用很重要,因此通常用開關穩(wěn)壓器替代換線性穩(wěn)壓器。此外,開關穩(wěn)壓器一般是輸入電源總線上的第一個有源組件,因此對整個產品設計的EMI性能有很大的影響。

傳導輻射依賴于連接到產品上的導線和走線。既然噪聲局限于設計中的特定端子或連接器,那么如上面已經提到的那樣,在開發(fā)過程中,常??梢酝ㄟ^良好的布局或濾波器設計,相對較早地確保滿足傳導輻射要求。

輻射 EMI 則完全是另一回事。電路板上攜帶電流的所有東西都輻射電磁場。電路板上的每一條走線都是天線,每一個銅平面都是諧振器。除了純正弦波或 DC 電壓,任何信號都產生遍布信號頻譜的噪聲。即使進行了仔細設計,在系統(tǒng)進行測試之前,電源設計師也從不會真正知道輻射 EMI 有多嚴重。而直到設計基本完成,才會正式進行輻射 EMI 測試。

濾波器常常用來降低 EMI,降低某個頻率或某個頻率范圍內的干擾強度。通過增加金屬屏蔽和磁屏蔽,可以衰減經由空間輻射的那部分能量。通過增加鐵氧體珠和其他濾波器,可以降伏依賴 PCB 走線的那部分能量 (傳導輻射)。EMI 不可能徹底消除,但是可以衰減到其他通信、信號處理和數(shù)字組件可接受的水平。此外,為了確保符合工業(yè)和汽車系統(tǒng)要求,幾家監(jiān)管機構執(zhí)行了一些標準。

采用表面貼裝技術的新式輸入濾波器組件比通孔式組件性能高。然而,這種改進卻抵不過今天高頻開關穩(wěn)壓器日益提高的要求。在更高的工作頻率上要求非常短的最短接通和斷開時間,導致因開關轉換更快而帶來更高次諧波分量,因此增大了輻射噪聲。不過,要獲得更高的轉換效率,就需要這樣高的開關速度。開關電容器充電泵沒有這種問題,因為這種充電泵以低得多的開關頻率工作,而且最重要的是,可以容許較慢的開關切換而不會降低效率。

熟練的 PCB 設計師會設計很小的熱環(huán)路,并使屏蔽接地層盡可能靠近激活層。然而,要在去耦組件中存儲充足的能量,對器件引腳布局、封裝結構、熱設計和封裝尺寸就會有一定的要求,這些要求決定了最小熱環(huán)路尺寸。使問題更加復雜的是,在典型平面印刷電路板中,走線之間高于 30MHz 的磁性或變壓器型耦合將減弱所有濾波效果,因為諧波頻率越高,不希望的磁耦合就越有效。

解決 EMI 問題的另一種方案

已嘗試過真正解決 EMI 問題的方法是,針對整個電路采用屏蔽盒,即使這樣,屏蔽也不能完全防止對盒內敏感電路的耦合。當然,這提高了成本、增大了所需電路板空間、使熱量管理和測試更加困難并增加了額外的組裝費用。另一種經常使用的方法是降低開關速度。這種方法會產生一些不希望的效應,即降低效率,延長最短接通 / 斷開時間以及相關的停滯時間,因此降低了潛在的電流控制環(huán)路速度。

幾年前,凌力爾特公司推出了 LT8614 Silent Switcher? 穩(wěn)壓器,該器件無需使用屏蔽盒,就可提供所希望的屏蔽盒效果,同時還消除了上述很多缺點。然而,在某些噪聲應用中,由于相關的 EMI 輻射,電源設計師就是不喜歡使用基于電感器的穩(wěn)壓器。同時,由于相對低的轉換效率和需要散熱器,線性穩(wěn)壓器 (即 LDO) 也有可能被排除在外。結果,設計師們轉向了另一種常見和稱為充電泵的方法。

充電泵已經出現(xiàn)幾十年了,它們提供 DC/DC 電壓轉換,用開關網(wǎng)絡給兩個或更多電容器充電和放電?;境潆姳瞄_關網(wǎng)絡在電容器的充電和放電狀態(tài)之間切換。如圖 1 所示,C1 是“浮動電容器”,運送電荷,C2 是“存儲電容器”,保存電荷,并對輸出電壓濾波。增加“浮動電容器”和開關陣列會實現(xiàn)多種好處。
104615j6m9wjfvoymz6evv.png 

圖 1:一個電壓反相器的簡化充電泵方框圖

當開關 S1 和 S3 接通或斷開時,開關 S2 和 S4 斷開或接通,輸入電源給 C1 充電。在下一個周期中,S1 和 S3 斷開,S2 和 S4 接通,電荷傳送到 C2,產生 VOUT = ?(V+)。

不過,直到最近,充電泵一直提供有限的輸入和輸出電壓范圍,這限制了它們在工業(yè)和汽車應用中的使用,在這類應用中,高達 40V 或 60V 的輸入是常見的。不過,隨著凌力爾特公司推出高壓充電泵,這種情況現(xiàn)在已經改變了。

高壓充電泵

LTC3245 是一款降壓-升壓型穩(wěn)壓器,丟棄了傳統(tǒng)上使用的電感器,而采用了一個開關電容器充電泵。其輸入電壓范圍為 2.7V 至 38V,可在沒有反饋分壓器的情況下使用,以產生 3.3V 或 5V 這兩個固定輸出電壓之一,或者通過反饋分壓器設定為 2.5V 至 5.5V 范圍內的任何輸出電壓。最大輸出電流為 250mA。LTC3245 能夠調節(jié)高于或低于輸入電壓的輸出電壓,從而能夠滿足汽車冷車發(fā)動需求。參見圖 2 的完整原理圖。

104615it44tt68bvo6ox64.png

圖 2:LTC3245 原理圖,從 2.7V 至 38V 輸入提供固定 5V 輸出

這個充電泵用 12V 電源提供 5V/100mA 輸出時,能實現(xiàn) 80% 的效率,這幾乎是線性穩(wěn)壓器的兩倍,從而有可能避免像帶散熱器的 LDO 那樣高之空間和成本要求。該充電泵滿負載時功耗幾乎低 LDO 三倍。參見圖 3 的 LTC3245 效率和功耗曲線。

104615x4nazj4tyyjek9tk.png

圖 3:12V 輸入至 5V 輸出時,LTC3245 效率 / 功耗曲線

EFFICIENCY:效率
5VOUT Efficiency vs Output Current:5VOUT 時,效率隨輸出電流的變化

LTC3245 還具備出色的輻射和傳導 EMI 性能,如圖 4a 和 4b 所示。這些測量結果是在一個符合 CISPR22 和 CISPR25 要求的微型容器中得出的。正如能夠看到的那樣,恰當?shù)厝ヱ詈弦院螅跐M足政府的輻射和傳導 EMI 監(jiān)管法規(guī)要求方面,LTC3245 不會產生任何問題。

104615bk8xb418zvs1c85f.png

圖 4:LTC3245 的輻射 (a) 和傳導 (b) EMI

AMPLITUDE:幅度
CISPR22 CLASS B LIMIT:CISPR22 CLASS B 限制
FREQUENCY:頻率
DETECTOR = PEAK HOLD:檢測器 = 峰值保持
SWEEP TIME:掃描時間
10 SWEEPS:10 次掃描
# OF POINTS:點數(shù)
CISPR25 CLASS 3 BROADBAND LIMIT:CISPR25 CLASS 3 寬帶限制

LOAD = 240Ω WITH 33μF ELECTROLYTIC & CERAMIC INPUT CAP:
負載 = 240Ω 以及 33μF 電解質和陶瓷輸入電容器

DETECTOR = PEAK:檢測器 = 峰值


在很多工業(yè)、醫(yī)療和汽車應用中,運算放大器、驅動器和傳感器等電子產品常常需要雙極性電源。不過,罕有可用于負載點處的雙極性電源。由于這種需求以及由于缺少簡便易用的解決方案,凌力爾特公司開發(fā)了 LTC3260。

LTC3260 是一款負輸出充電泵 DC/DC 轉換器,具備兩個低噪聲 LDO 穩(wěn)壓器跟隨器,可用單一 4.5V 至 32V 輸入電源產生正和負電源,如圖 5 的完整原理圖所示。該器件可以在高效率突發(fā)模式 (Burst Mode?) 運行和低噪聲恒定電流頻率模式之間切換,從而允許設計師針對應用做出最佳權衡。

LTC3260 可用反相輸入電壓在充電泵輸出 VOUT 端提供高達 100mA 電流。這個 VOUT 還作為負 LDO 穩(wěn)壓器 LDO? 的輸入電壓。充電泵頻率可用單個電阻器在 50kHz 至 500kHz 范圍內調節(jié)。LTC3260 的每個 LDO 都可支持高達 50mA 的負載。而且,每個 LDO 在 50mA 時都有 300mV 壓差電壓,輸出電阻器分壓器網(wǎng)絡可用來設定輸出電壓。當兩個穩(wěn)壓器都禁止時,停機靜態(tài)電流僅為 2μA。


104615ozlbfdob3radgprm.png

圖 5:12V 輸入電源至 ±5V 輸出

結論

眾所周知,在設計之初,對于工業(yè)、醫(yī)療和汽車環(huán)境的 EMI 問題需要嚴加注意,以確保一旦系統(tǒng)完成,能夠通過 EMI 測試。直到現(xiàn)在為止,尚沒有一種必定成功的方法,能確保通過選擇恰當?shù)碾娫?IC 而在最后輕松地通過 EMI 測試,除了功率非常低的系統(tǒng)。

凌力爾特公司最近推出了低 EMI 穩(wěn)壓器和 DC/DC 轉換器,包括一個廣泛的線性穩(wěn)壓器系列以及 LT86xx Silent Switcher 降壓型轉換器。現(xiàn)在,我們日益擴大的高壓充電泵系列提供了第三種選擇。與線性穩(wěn)壓器相比,這類產品提供高得多的效率和低得多的功耗,而且不需要應對與開關穩(wěn)壓器有關的補償、布局、磁場和 EMI 問題。

本站內容除特別聲明的原創(chuàng)文章之外,轉載內容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創(chuàng)文章及圖片等內容無法一一聯(lián)系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。