隨著通信技術(shù)的發(fā)展,無線射頻電路" title="射頻電路">射頻電路技術(shù)運(yùn)用越來越廣,其中的射頻電路的性能指標(biāo)直接影響整個產(chǎn)品的質(zhì)量,射頻電路印制電路板(PCB)的抗干擾設(shè)計對于減小系統(tǒng)電磁信息輻射具有重要的意義。射頻電路PCB的密度越來越高,PCB設(shè)計的好壞對抗干擾能力影響很大,同一電路,不同的PCB設(shè)計結(jié)構(gòu),其性能指標(biāo)會相差很大。電磁干擾信號如果處理不當(dāng),可能造成整個電路系統(tǒng)的無法正常工作,因此如何防止和抑制電磁干擾,提高電磁兼容性,就成為設(shè)計射頻電路PCB時的一個非常重要的課題。
電磁兼容性EMC是指電子系統(tǒng)在規(guī)定的電磁環(huán)境中按照設(shè)計要求能正常工作的能力。電子系統(tǒng)所受的電磁干擾不僅來自電場和磁場的輻射,也有線路公共阻抗、導(dǎo)線間耦合和電路結(jié)構(gòu)的影響。在研制設(shè)計電路時,希望設(shè)計的印制電路板盡可能不易受外界干擾的影響,而且也盡可能小地干擾影響別的電子系統(tǒng)。
設(shè)計印制板首要的任務(wù)是對電路進(jìn)行分析,確定關(guān)鍵電路。這就是要識別哪些電路是干擾源,哪些電路是敏感電路,弄清干擾源可能通過什么路徑干擾敏感電路。射頻電路工作頻率高,干擾源主要是通過電磁輻射來干擾敏感電路,因此射頻電路PCB板抗干擾設(shè)計的目的是減小PCB板的電磁輻射和PCB板上電路之間的串?dāng)_。
射頻電路板設(shè)計
1 元器件的布局
由于SMT一般采用紅外爐熱流焊來實(shí)現(xiàn)元器件的焊接,因而元器件的布局影響到焊點(diǎn)的質(zhì)量,進(jìn)而影響到產(chǎn)品的成品率。而對于射頻電路PCB設(shè)計而言,電磁兼容性要求每個電路模塊盡量不產(chǎn)生電磁輻射,并且具有一定的抗電磁干擾能力,因此元器件的布局也影響到電路本身的干擾及抗干擾能力,直接關(guān)系到所設(shè)計電路的性能。故在進(jìn)行射頻電路PCB設(shè)計時除了要考慮普通PCB設(shè)計時的布局外,主要還須考慮如何減小射頻電路中各部分之間的相互干擾、如何減小電路本身對其他電路的干擾以及電路本身的抗干擾能力。
根據(jù)經(jīng)驗(yàn),射頻電路效果的好壞不僅取決于射頻電路板本身的性能指標(biāo),很大部分還取決于與CPU處理板間的相互影響,因此在進(jìn)行PCB設(shè)計時,合理布局顯得尤為重要。布局的總原則是元器件應(yīng)盡可能同一方向排列,通過選擇PCB進(jìn)入熔錫系統(tǒng)的方向來減少甚至避免焊接不良的現(xiàn)象;根據(jù)經(jīng)驗(yàn)元器件間最少要有0.5mm的間距才能滿足元器件的熔錫要求,若PCB板的空間允許,元器件的間距應(yīng)盡可能寬。對于雙面板一般應(yīng)設(shè)計一面為SMD及SMC元件,另一面則為分立元件。
布局中應(yīng)注意:
1)首先確定與其他PCB板或系統(tǒng)的接口元器件在PCB板上的位置,必須注意接口元器件間的配合問題(加元器件的方向等);
2)因?yàn)檎粕嫌闷返捏w積都很小,元器件間排列很緊湊,因此對于體積較大的元器件,必須優(yōu)先考慮,確定出相應(yīng)位置,并考慮相互間的配合問題;
3)認(rèn)真分析電路結(jié)構(gòu),對電路進(jìn)行分塊處理(加高頻放大電路、混頻電路及解調(diào)電路等),盡可能將強(qiáng)電信號和弱電信號分開,將數(shù)字信號電路和模擬信號電路分開,完成同一功能的電路應(yīng)盡量安排在一定的范圍之內(nèi),從而減小信號環(huán)路面積;各部分電路的濾波網(wǎng)絡(luò)必須就近連接,這樣不僅可以減小輻射,而且可以減少被干擾的機(jī)率,提高電路的抗干擾能力;
4)根據(jù)單元電路在使用中對電磁兼容性敏感程度不同進(jìn)行分組。對于電路中易受干擾部分的元器件在布局時還應(yīng)盡量避開干擾源(比如來自數(shù)據(jù)處理板上CPU的干擾等)。
2 布 線
在基本完成元器件的布局后,就可開始布線了。布線的基本原則為:在組裝密度許可情況下,盡量選用低密度布線設(shè)計,并且信號走線盡量粗細(xì)一致,有利于阻抗匹配。
對于射頻電路,信號線的走向、寬度、線間距的不合理設(shè)計,可能造成信號傳輸線之間的交叉干擾;另外,系統(tǒng)電源自身還存在噪聲干擾,所以在設(shè)計時頻電路PCB時一定要綜合考慮,合理布線。布線時,所有走線應(yīng)遠(yuǎn)離PCB板的邊框2mm左右,以免PCB板制作時造成斷線或有斷線的隱患。
電源線要盡可能寬,以減少環(huán)電阻,同時使電源線、地線的走向和數(shù)據(jù)傳遞的方向一致,以提高抗干擾能力;所布信號線應(yīng)盡可能短,并盡量減少過孔數(shù)目;各元器件間的連線越短越好,以減少分布參數(shù)和相互間的電磁干擾;對不相容的信號線應(yīng)盡量相互遠(yuǎn)離,且盡量避免平行走線,而在正反兩面的信號線應(yīng)相互垂直;布線時在需要拐角的地方應(yīng)以135°角為宜,避免拐直角。
布線時與焊盤直接相連的線條不宜太寬,走線應(yīng)盡量離開不相連的元器件,以免短路;過孔不宜畫在元器件上,且應(yīng)盡量遠(yuǎn)離不相連的元器件,以免在生產(chǎn)中出現(xiàn)虛焊、連焊、短路等現(xiàn)象。在射頻電路PCB設(shè)計中,電源線和地線的正確布線顯得尤其重要,合理的設(shè)計是克服電磁干擾的最重要的手段。
PCB上相當(dāng)多的干擾源是通過電源和地線產(chǎn)生的,其中地線引起的噪聲干擾最大。地線容易形成電磁干擾的主要原因在于地線存在阻抗。當(dāng)有電流流過地線時,就會在地線上產(chǎn)生電壓,從而產(chǎn)生地線環(huán)路電流,形成地線的環(huán)路干擾。當(dāng)多個電路共用一段地線時,就會形成公共阻抗耦合,從而產(chǎn)生所謂的地線噪聲。
因此,在對射頻電路PCB的地線進(jìn)行布線時應(yīng)該做到:
1)對電路進(jìn)行分塊處理時,射頻電路基本上可分成高頻放大、混頻、解調(diào)、本振等部分,要為各個電路模塊提供一個公共電位參考點(diǎn),即各模塊電路各自的地線,這樣信號就可以在不同的電路模塊之間傳輸。然后,匯總于射頻電路PCB接入地線的地方,即匯總于總地線。由于只存在一個參考點(diǎn),因此沒有公共阻抗耦合存在,從而也就沒有相互干擾問題;
2)數(shù)字區(qū)與模擬區(qū)盡可能以地線進(jìn)行隔離,并且數(shù)字地與模擬地要分離,最后接于電源地;
3)在各部分電路內(nèi)部的地線也要注意單點(diǎn)接地原則,盡量減小信號環(huán)路面積,并與相應(yīng)的濾波電路的地線就近相接;
4)在空間允許的情況下,各模塊之間最好能以地線進(jìn)行隔離,防止相互之間的信號耦合效應(yīng)。
實(shí)驗(yàn)測試
下面幾個實(shí)驗(yàn)測試事例,說明了不同原因帶來的干擾及其實(shí)際的解決辦法。
1 電源線和地線帶來的干擾
圖1取自某高壓控制保護(hù)PCB的部分電路。圖1a為原設(shè)計電路。由于電源線和地線的印制導(dǎo)線寬度太細(xì),電路在工作時局受外界干擾;圖1b是經(jīng)過改進(jìn)后的電路,其電源線和地線加粗至5mm,解決了電路的干擾問題。
圖1 某高壓控制保護(hù)PCB的部分電路
2 元器件布局不合理帶來的干擾
圖2取自某雷達(dá)發(fā)射機(jī)磁場控制保護(hù)PCB的部分電路。重新布局元器件后改進(jìn)的PCB電路(如圖2b)較改進(jìn)前的PCB電路(如圖2a)在抗干擾性能上有很大的改善。
圖2 某雷達(dá)發(fā)射機(jī)磁場控制保護(hù)PCB的部分電路
3 布線不合理帶來的干擾
圖3取自某雷達(dá)CFA電源控制保護(hù)PCB的部分電路。圖3a為原設(shè)計電路。由于布線時將高壓取樣信號線布于閉環(huán)取樣回路中,使閉環(huán)取樣電路在工作時易受外界的干擾,造成經(jīng)常誤報過壓故障;而圖3b是經(jīng)過改進(jìn)后的PCB電路,由于避開了高壓取樣信號線帶來的干擾,改進(jìn)后的PCB電路工作可靠穩(wěn)定。
圖3 某雷達(dá)CFA電源控制保護(hù)PCB的部分電路
射頻電路PCB設(shè)計的關(guān)鍵在于如何減少輻射能力以及如何提高抗干擾能力,合理的布局與布線是設(shè)計時頻電路PCB的保證。文中所述方法有利于提高射頻電路PCB設(shè)計的可靠性,解決好電磁干擾問題,進(jìn)而達(dá)到電磁兼容的目的。