文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2013)05-0041-03
作為連接模擬世界和數(shù)字世界的橋梁,ADC的性能影響整個(gè)系統(tǒng)的性能。如何對(duì)ADC進(jìn)行性能測(cè)試是目前ADC研究的熱門領(lǐng)域之一。表征ADC的性能參數(shù)分為靜態(tài)性能參數(shù)和動(dòng)態(tài)性能參數(shù)。靜態(tài)性能參數(shù)描述ADC的內(nèi)在特性,主要關(guān)注穩(wěn)定模擬輸入與對(duì)應(yīng)數(shù)字輸出的關(guān)系;動(dòng)態(tài)性能參數(shù)描述的是ADC采樣和重現(xiàn)時(shí)序變化信號(hào)的能力。用于定量表示ADC動(dòng)態(tài)性能的常用參數(shù)有6個(gè),分別是:SINAD(信納比)、ENOB(有效位數(shù))、SNR(信噪比)、THD(總諧波失真)、THD+N(總諧波失真加噪聲)和SFDR(無(wú)雜散動(dòng)態(tài)范圍)等。在這些動(dòng)態(tài)性能參數(shù)中,ENOB是表征ADC的動(dòng)態(tài)性能的重要參數(shù),ADC自身及外部電路產(chǎn)生的噪聲和諧波等都可以在該參數(shù)中得到反映。
測(cè)試ADC性能參數(shù)的方法主要有模擬方法和數(shù)字方法兩種。模擬方法是將ADC得到的采樣數(shù)據(jù)經(jīng)DAC轉(zhuǎn)換為模擬信號(hào),再使用傳統(tǒng)的方法進(jìn)行測(cè)試,該方法引入了DAC的噪聲和諧波,因此會(huì)影響ADC性能指標(biāo);數(shù)字方法主要有直方圖法、正弦波擬合法和FFT法等[1],直方圖法測(cè)試ADC的等效輸入噪聲等性能參數(shù),正弦波擬合法對(duì)ADC的動(dòng)態(tài)性能給出總體描述,F(xiàn)FT方法測(cè)試ADC動(dòng)態(tài)性能參數(shù)。直方圖法和正弦波擬合法引入了信號(hào)源的噪聲和諧波等外圍電路干擾,并且測(cè)試的性能參數(shù)單一,相比之下,F(xiàn)FT方法可以抑制甚至消除外圍電路影響,獲得的動(dòng)態(tài)性能參數(shù)也較多[2]。本文重點(diǎn)討論如何采用FFT方法對(duì)ADC的ENOB進(jìn)行測(cè)試。
可以看到,相干采樣對(duì)信號(hào)源的頻率分辨率和穩(wěn)定性要求很高。在實(shí)際操作時(shí),信號(hào)源無(wú)法滿足條件,需要對(duì)采樣數(shù)據(jù)進(jìn)行加窗函數(shù)處理以減少頻譜泄漏。
加窗函數(shù)時(shí),窗函數(shù)的選擇非常重要。理想的窗函數(shù)是主瓣寬度盡量小、過(guò)渡帶盡量陡,以使頻點(diǎn)能量更加集中。應(yīng)用較多的窗函數(shù)有矩形窗、漢寧窗、哈明窗、布萊克曼窗等。圖1給出了相干采樣圖形和非相干采樣圖形加窗函數(shù)后的功率譜密度。對(duì)于相干采樣,能量都集中在一個(gè)頻率點(diǎn)上,平均噪底低;對(duì)于非相干采樣,出現(xiàn)了頻譜泄漏現(xiàn)象,平均噪底被抬高,經(jīng)過(guò)加窗函數(shù)處理后,其平均噪底被壓低,能量分布得到集中,但是能量依然不如相干采樣集中。在測(cè)試ADC動(dòng)態(tài)性能參數(shù)時(shí),選擇一個(gè)合適的窗函數(shù)很難,不同的窗函數(shù)導(dǎo)致測(cè)試結(jié)果也不一樣。
3 使用FFT測(cè)試ADS5400
在對(duì)ADC的ENOB進(jìn)行測(cè)試時(shí),會(huì)引入一定量的噪聲和諧波,主要分為兩類,一類是ADC自身的噪聲和諧波,這是ADC的固有特性;另一類是外圍電路引入的噪聲和諧波,這些外圍設(shè)備包括信號(hào)源、時(shí)鐘源等。測(cè)試其動(dòng)態(tài)性能參數(shù)時(shí),需要抑制或消除外圍電路引入的噪聲和諧波。本文采用了參考文獻(xiàn)[8]提到的ENOB測(cè)試方法,利用式(1)得到ADC的ENOB。該方法可以有效抑制信號(hào)源的干擾,實(shí)現(xiàn)了對(duì)ADC的ENOB的客觀測(cè)量[8-9]。
采用上述步驟對(duì)TI公司的ADS5400進(jìn)行測(cè)量,測(cè)量平臺(tái)如圖2所示。ADS5400是一款高速高分辨率ADC,采樣率范圍100 MS/s~1 000 MS/s,分辨率為12 bit。
最終測(cè)得,在輸入信號(hào)頻率為1.123 MHz、輸入幅度滿量程時(shí),ADS5400的SINAD=56.66 dB,有效位ENOB=9.12 bit(fin=1.123 MHz)。對(duì)比ADS5400的Datasheet給出的ENOB典型值ENOB=9.34 bit(fin=125 MHz)可以發(fā)現(xiàn),改進(jìn)的FFT方法很好地抑制了信號(hào)源以及其他外圍電路的干擾,基本實(shí)現(xiàn)了對(duì)ADC的ENOB的準(zhǔn)確測(cè)量。
對(duì)ADC動(dòng)態(tài)性能參數(shù)進(jìn)行測(cè)試時(shí),要注意抑制或消除ADC自身及外圍電路的噪聲和諧波引入的干擾。
本文介紹了一種改進(jìn)的FFT方法用于高速高分辨率ADC的動(dòng)態(tài)性能參數(shù)測(cè)試,注意到FFT分析采樣數(shù)據(jù)時(shí)的頻譜泄漏問(wèn)題,給出了相干采樣和加窗函數(shù)等解決方案。采用改進(jìn)的FFT方法對(duì)TI公司的ADS5400進(jìn)行測(cè)試,在采樣率為400 MS/s的情況下,獲得了ADS5400的ENOB=9.12 bit(fin=1.123 MHz)。同時(shí),驗(yàn)證了使用FFT方法測(cè)量高速高分辨率ADC的有效位的可行性,該方法可以廣泛應(yīng)用在ADC的動(dòng)態(tài)性能參數(shù)測(cè)試中。
參考文獻(xiàn)
[1] 駱麗娜,楊萬(wàn)全.高速ADC的性能參數(shù)與測(cè)試方法[J].實(shí)驗(yàn)科學(xué)與技術(shù),2007,5(2):145-147.
[2] 鄧若漢,余金金,王洪彬,等.基于Labview的ADC綜合性能測(cè)試系統(tǒng)[J].科學(xué)技術(shù)與工程,2012,12(19):4653-4657.
[3] 成章,王建,劉敏,等.關(guān)于ADC測(cè)試平臺(tái)的探討[J].電子信息對(duì)抗技術(shù),2012,27(4):77-80.
[4] KESTER W.揭開一個(gè)公式(SNR=6.02N+1.76 dB)的神秘面紗,以及為什么我們要予以關(guān)注[Z/OL].ADI,MT-001(2008)[2008].http://www.analog.com.
[5] 侯樹文,李鵬,付帥.基于加窗傅里葉變換的電力系統(tǒng)諧波分析算法[J].華北水利水電學(xué)院學(xué)報(bào),2011,32(4):88-91.
[6] 崔慶林,蔣和全.高速A/D轉(zhuǎn)換器測(cè)試采樣技術(shù)研究[J].微電子學(xué),2005,36(1):52-55.
[7] TI.High-speed analog-to-digital converter basics[Z/OL].TI,SLAA510(2011)[2011].http://www.ti.com.
[8] 邱兆坤,王偉,馬云,等.一種新的高分辨率ADC有效位數(shù)測(cè)試方法[J].國(guó)防科技大學(xué)學(xué)報(bào),2004,26(4):1-5.
[9] 向海生,趙豫斌,江曉山,等.八通道1 Gsps數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)與測(cè)試[J].核電子學(xué)與探測(cè)技術(shù),2011,31(4):395-398.