《電子技術(shù)應用》
您所在的位置:首頁 > 電源技術(shù) > 設計應用 > TISDI傳輸方案
TISDI傳輸方案
摘要: 由于SDI的高清晰度、傳輸實時性等優(yōu)勢,最初應用于專業(yè)視頻廣播領(lǐng)域,近年來正越來越多的被安防領(lǐng)域所采用。但由于SDI的數(shù)據(jù)傳輸數(shù)據(jù)率高,存儲數(shù)據(jù)量大等特性,對部分原來采用IP網(wǎng)絡高清監(jiān)控方案的安防從業(yè)者而言,在設計、應用等方面還存在一定的難度。為了幫助讀者更全面地了解和設計SDI,本文介紹了如何選擇適當?shù)腟DI信號鏈器件,如何設計高性能的SDI信號鏈,介紹了均衡器、電纜驅(qū)動器、重定時器的基本工作原理,PCB布板
Abstract:
Key words :

摘要

由于SDI 的高清晰度、傳輸實時性等優(yōu)勢,最初應用于專業(yè)視頻廣播領(lǐng)域,近年來正越來越多的被安防領(lǐng)域所采用。但由于SDI 的數(shù)據(jù)傳輸數(shù)據(jù)率高,存儲數(shù)據(jù)量大等特性,對部分原來采用IP 網(wǎng)絡高清監(jiān)控方案的安防從業(yè)者而言,在設計、應用等方面還存在一定的難度。為了幫助讀者更全面地了解和設計SDI,本文介紹了如何選擇適當?shù)腟DI 信號鏈器件,如何設計高性能的SDI 信號鏈,介紹了均衡器、電纜驅(qū)動器、重定時器的基本工作原理,PCB 布板和電源設計的建議以及TI 在SDI 領(lǐng)域的具體方案。

1. SDI 簡介

SDI,串行數(shù)字接口,是用來傳輸標清、高清、3G 高清等無壓縮數(shù)字視頻信號的一個標準,當前最流行的SDI視頻格式如表1所示。由于SDI具有高清特性,時延小,還可以重復利用已布網(wǎng)的模擬視頻電纜等優(yōu)勢,正逐漸地被安防、監(jiān)控等領(lǐng)域廣泛采用。目前市面上SDI相關(guān)設備主要是SDI延長器、分配器、矩陣、多畫面分割、編解碼器、SDI光端機、DVR等。



相對于傳統(tǒng)的IP監(jiān)控網(wǎng)絡,SDI的優(yōu)勢是非常明顯的:

在圖像清晰度上SDI有無可比擬的優(yōu)勢

高清不僅僅意味著高的分辨率,還必須在超寬動態(tài)、白平衡、信噪比、亮度、對比度、銳利度等方面有優(yōu)秀的表現(xiàn)。

IP網(wǎng)絡監(jiān)控視頻由于經(jīng)過編碼壓縮,在上述圖像質(zhì)量、圖像細節(jié)等方面都遠不及無壓縮的SDI。

SDI傳輸實時性強

SDI信號的傳輸不經(jīng)過壓縮環(huán)節(jié),沒有處理時延;不經(jīng)過IP網(wǎng)絡,不受網(wǎng)絡時延的影響。

從模擬監(jiān)控系統(tǒng)升級至SDI可以重復利用已有的布線系統(tǒng)

SDI也是采用同軸75歐姆的電纜和BNC接口,可以方便快捷的從傳統(tǒng)的模擬監(jiān)控系統(tǒng)升級至SDI,而無需像IP網(wǎng)絡那樣須重新布置網(wǎng)絡,這種特性在模擬監(jiān)控系統(tǒng)的升級改造中具有巨大的優(yōu)勢,因為施工改造IP網(wǎng)絡對很多建筑而言是不允許的。

另一方面,SDI也有缺點,比如現(xiàn)階段成本較高,數(shù)據(jù)存儲量大,遠距離傳輸設計難度較大等,但隨著SDI被市場逐漸地廣泛采用,上述缺點都會逐漸弱化。

2. SDI 器件的工作原理及TI 相關(guān)產(chǎn)品簡介

圖1 是一個典型的SDI 輸入、輸出和處理的應用框圖,TI 能夠提供相應的全套SDI 傳輸方案,它們分別是均衡器、線纜驅(qū)動器、重定時器、交叉開關(guān)矩陣、視頻時鐘、顯示驅(qū)動、存儲驅(qū)動和電源。


圖1 典型的SDI 應用

均衡器

信號的高頻成分經(jīng)過PCB 走線或者電纜傳輸后相對于信號的低頻成分會被衰減得更多,此現(xiàn)象被稱為趨膚效應,它會破壞高速信號的信號完整性,使其眼圖關(guān)閉并增加信號抖動。為了補償趨膚效應,人們發(fā)明了均衡器、預加重器、去加重器來補償傳輸線頻率響應的不平坦性。圖2 是一種傳輸線和均衡器的頻率響應圖,傳輸線模型在高頻處會衰減得更多而均衡器在高頻處有更高增益,將均衡器的高頻增益設置成適當?shù)闹?,傳輸線和均衡器串聯(lián)后會形成在全頻帶內(nèi)大致平坦的頻率響應。

通常預加重器和去加重器用在高速數(shù)字信號傳輸?shù)陌l(fā)射端,均衡器用在接收端,但在SDI 鏈路中只在接收端采用均衡器,且一般是自適應均衡器,而在發(fā)射端不采用預加重或去加重,因為SDI 設備間可能通過用戶定義的任意長度的同軸電纜來連接,任意一個固定的均衡或者預/去加重值都無法靈活地滿足各種電纜長度,且業(yè)內(nèi)還沒有自適應的預加重器和去加重器。另外,SDI 設備必須即插即用,不允許客戶在應用現(xiàn)場手動設置合適的均衡值來得到最佳的電纜傳輸特性。 因此只有自適應均衡器是理想方案,自適應均衡器可以自動檢測信號質(zhì)量而相應的設置最佳的均衡值而得到最佳的傳輸通道頻率響應。


圖2 傳輸線和均衡器的頻率響應

圖3 是均衡器的使用效果圖,可以看出高速SDI 信號經(jīng)過一段電纜或者PCB 走線后眼圖和抖動性能被均衡器顯著改


圖 3 均衡器的使用效果

TI 提供支持SD、HD、3G SDI 全系列的均衡器,如表2 所示。

Family

Equalizer

Description

3G/HD/SD

LMH0395

3G HD/SD SDI Dual Output Low Power Extended Reach Adaptive Cable Equalizer

LMH0394

3G HD/SD SDI Low Power Extended Reach Adaptive Cable Equalizer

LMH0384

3G HD/SD SDI Extended Reach and Configurable Adaptive Cable Equalizer

LMH0344

3G HD/SD SDI Adaptive Cable Equalizer

HD

LMH0044

SMPTE 292M / 259M Adaptive Cable Equalizer

LMH0034

SMPTE 292M / 259M Adaptive Cable Equalizer

SD

LMH0024

SMPTE 259M / 344M Adaptive Cable Equalizer

LMH0074

SMPTE 259M / 344M Adaptive Cable Equalizer


表 2 均衡器

其中LMH0394 是一款極高性能的均衡器,它的競爭性分析如圖4 所示,傳輸距離很長且功耗很低。


圖4 均衡器 LMH0394 競爭性分析

重定時器

SDI 重定時器是用來自動檢測輸入信號類型,調(diào)整自身的PLL和CDR電路而恢復和整形出低抖動的時鐘,再重新定時發(fā)送出接收到的SDI信號,以降低SDI信號的抖動。 雖然均衡器也可以降低SDI信號的抖動,但它和重定時器是兩種完全不同的器件,兩者不可相互替代。均衡器的作用是通過增加高頻增益使傳輸通道頻率響應趨于平坦來改善眼圖和信號抖動,而重定時器則是通過PLL和CDR來抑制和降低累加噪聲。如果SDI傳輸通道很長或者傳輸過程中被其他噪聲和干擾惡化,僅有均衡器還不足以改善信號的質(zhì)量,此時在均衡器輸出端再串接一個重定時器是一個理想的提高SDI信號質(zhì)量的方案。圖5描述了重定時器的去抖效果,可見眼圖和抖動被明顯改善。


圖 5 重定時器使用效果

TI 重定時器產(chǎn)品系列如表3 所示。

Family

Reclocker

Description

3G/HD/SD

LMH0356

3Gbps HD/SD SDI Reclocker with 4:1 Input Mux and FR4 EQs

LMH0346

3Gbps HD/SD SDI Reclocker with Dual Differential Outputs

HD

LMH0056

HD/SD SDI Reclocker with 4:1 Input Multiplexer

LMH0046

HD/SD SDI Reclocker with Dual Differential Outputs

SD

LMH0036

SD SDI Reclocker with 4:1 Input Multiplexer

LMH0026

SD SDI Reclocker with Dual Differential Outputs


表 3 重定時器系列

線纜驅(qū)動器

SDI 線纜驅(qū)動器用來加強對線纜的驅(qū)動能力,提供標準的800mV 峰峰值輸出電壓擺幅,沒有預加重和去加重功能。TI 的線纜驅(qū)動器系列如表4 所示。

Family

Cable Driver

Description

3G/HD/SD

LMH0307

3Gbps HD/SD SDI Dual Output Cable Driver with Cable Detect

LMH0303

3Gbps HD/SD SDI Cable Driver with Cable Detect

LMH0302

3Gbps HD/SD SDI Cable Driver

HD

LMH0202

LMH0202 SMPTE 292M / 259M Serial Digital Cable Driver

LMH0002

SMPTE 292M / 259M Serial Digital Cable Driver

SD

LMH0001

SMPTE 259M / 344M Serial Digital Cable Driver


表 4 線纜驅(qū)動器

3. PCB 布板建議

SDI 信號比特率最高至2.97Gbps,因此SDI 的信號路徑必須嚴格按照高頻電路的設計方法處理,否則無法得到高質(zhì)量的傳輸性能。SMPTE 協(xié)會也定制了關(guān)于SDI 信號回損的指標要求,如圖6 所示。為了滿足這個指標,我們必須精細地設計整個SDI 傳輸路徑以保證阻抗的連續(xù)性,尤其在BNC 連接器的選擇、線纜的選擇、PCB 布局、原理圖設計、合適的SDI 器件選擇上需特別注意。

圖 6 SMPTE 規(guī)定的回損指標

現(xiàn)實中,由于端口間阻抗的不匹配,任何輸入輸出信號都會被輸入或者輸出端反射一部分,反射波會與正向波疊加而惡化正向波形,因此我們必須設計好整個鏈路的阻抗匹配以降低反射,在高速信號中尤為重要。

回波損耗(Return Loss)或者S11/S22(S 參數(shù))是用來定義回波損耗大小的指標, 其中S11/S22 是反射功率與正向功率的比值,它們與輸入輸出阻抗的對應關(guān)系如下,



回波損耗與S11 的關(guān)系如下,

RL = - 20log|S11|

其中Z0 是傳輸線的特征阻抗。

從公式中可以看出回波損耗完全由輸入輸出阻抗與傳輸線特征阻抗是否匹配決定。除了要使用正確的匹配元器件值,高質(zhì)量的PCB 走線對阻抗匹配也至關(guān)重要,因為信號走線上寄生的電感電容會影響阻抗,不適當?shù)倪^孔、拐彎、線寬等都會影響走線阻抗。

一些基本的高速信號PCB 布線原則列舉如下:

采用高質(zhì)量的BNC 接頭

低質(zhì)量的BNC 接頭的阻抗可能與要求的75 歐姆相差甚遠

微帶線的設計和制造必須保證高精度

微帶線的阻抗與線寬和PCB 制造工藝直接相關(guān)

SDI 信號線應盡可能的短且直

短線有更少的寄生電感電容值,對阻抗的影響更低,且長度相對于信號波長越短,反射波對正向波的影響越低彎曲的走線有不連續(xù)的寬度,導致不連續(xù)的阻抗,從而導致反射

匹配電路采用高Q 值的射頻電感電容

普通電感電容在高頻下的感值或者容值與標稱值相差甚遠,導致實際阻抗與標稱阻抗相差甚遠

匹配元器件盡可能的靠近IC 管腳

不要有過孔

4. 電源設計建議

SDI 對眼圖、抖動、噪聲等有嚴格的要求,低噪聲低紋波的電源設計方案對SDI 信號鏈路非常重要。圖7 是一個典型的線纜驅(qū)動器的應用原理圖,可以看出電源Vcc 是通過一個75 歐姆的電阻與輸出端直接相連的,因此電源上任何的噪聲和紋波都會直接耦合到輸出信號端。 SMPTE 規(guī)范了輸出電壓幅度典型值是800mV, 一個3G SDI 經(jīng)過200 米的電纜傳輸后最多可以被衰減50dB ,而低頻的電源噪聲和紋波在經(jīng)過長電纜以后幾乎沒有衰減,這意味著SDI 信號幅度在經(jīng)過電纜傳輸以后可以低至幾mV,這與電源噪聲和紋波已非常接近,此時電源將大大惡化SDI 的信噪比。因此,電源噪聲和紋波必須很低,建議采用低噪聲的LDO(如TI 的LP3878)給所有SDI 器件供電,而不是直接采用DC/DC。

圖 7 SDI 器件對電源的要求

5. 總結(jié)

SDI 由于具有高清晰度,傳輸時延小,升級改造原有模擬視頻監(jiān)控網(wǎng)絡容易等巨大優(yōu)勢正越來越被安防市場認可并采用,國內(nèi)外主流的安防設備廠商都已經(jīng)有非常成熟的從攝像頭前端、中繼、切換、分發(fā)、后端圖像處理、識別、存儲等環(huán)節(jié)的全套SDI 解決方案,并已成功應用于銀行、交通、平安城市等各行各業(yè),SDI 替換部分IP 監(jiān)控網(wǎng)絡和模擬視頻監(jiān)控網(wǎng)絡是大勢所趨。

TI 在SDI 技術(shù)應用之初就為客戶提供了優(yōu)秀豐富的全套SDI 傳輸方案,并得到市場的廣泛認可。我們在深刻理解了SDI 相關(guān)器件的工作原理,正確地選擇合適的SDI 器件,合理地PCB 布線和電源設計,依托TI 強勁的產(chǎn)品和技術(shù)支持,就可以設計出高質(zhì)量的SDI 產(chǎn)品。

6. 參考文獻
1. Zhang Keqian, Li Dejie, Electromagnetic Theory in Microwaves and Optoelectronics
2. LMH0346 datasheet, Literature number SNLS248I
3. LMH0302 datasheet, Literature number SNLS247F

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。