《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 采用原邊反饋的LED驅(qū)動設(shè)計
采用原邊反饋的LED驅(qū)動設(shè)計
摘要: LED驅(qū)動電源目前正朝著高功率因數(shù)、高輸出電流精度、高效率、高可靠性和低成本、小尺寸方向發(fā)展,因此,帶PFC(功率因數(shù)校正)的原邊電流反饋準(zhǔn)諧振技術(shù)方案已漸漸成為市場主流?,F(xiàn)有的照明用LED驅(qū)動電源目前標(biāo)準(zhǔn)仍有待統(tǒng)一,但PFC在全電壓范圍內(nèi)做到0.95以上、輸出電流精度做到±3%以內(nèi)、效率做到90%以上、啟動時間在0.5s以內(nèi)、輸出電壓紋波小于5%等,已經(jīng)成為一些業(yè)內(nèi)領(lǐng)先的芯片供應(yīng)商設(shè)置的技術(shù)競爭門檻。
Abstract:
Key words :

LED驅(qū)動電源目前正朝著高功率因數(shù)、高輸出電流精度、高效率、高可靠性和低成本、小尺寸方向發(fā)展,因此,帶PFC(功率因數(shù)校正)的原邊電流反饋準(zhǔn)諧振技術(shù)方案已漸漸成為市場主流?,F(xiàn)有的照明用LED驅(qū)動電源目前標(biāo)準(zhǔn)仍有待統(tǒng)一,但PFC在全電壓范圍內(nèi)做到0.95以上、輸出電流精度做到±3%以內(nèi)、效率做到90%以上、啟動時間在0.5s以內(nèi)、輸出電壓紋波小于5%等,已經(jīng)成為一些業(yè)內(nèi)領(lǐng)先的芯片供應(yīng)商設(shè)置的技術(shù)競爭門檻。

要達到上述這些要求,市場必然要求有一款功能全面、性能優(yōu)異的芯片,同時,這也對系統(tǒng)設(shè)計者提出了更高的要求。本文從芯片和系統(tǒng)兩個層面,詳細(xì)分析了影響上述性能的原因和提高各項性能的手段,并給出了實驗波形和數(shù)據(jù)。無論對于LED驅(qū)動芯片設(shè)計者還是系統(tǒng)設(shè)計者而言,都具有一定的參考意義。

基本原理

LED驅(qū)動電源功率較小,器件的應(yīng)力裕度較大,加之其對尺寸有嚴(yán)格要求,需采用盡可能小的原邊電感量,因此,它一般采用DCM峰值電流控制PFC的方式。其原、副邊的電流方程為:
 
 

式中:n=Np/ Ns為原副邊匝比;IP為原邊峰值電流。

由公式(1)可知,要使輸入電流峰值IP跟隨輸入電壓Vm做正弦變化,只要讓ton在一個正弦半波時間內(nèi)保持恒定就能做到。另一方面,如果采用乘法器方案,強制讓IP跟隨Vm變化,則ton必然在一個正弦半波周期內(nèi)保持恒定。前者稱之為固定導(dǎo)通時間PFC方案。其優(yōu)點是可以節(jié)省Vins的采樣電阻,節(jié)省芯片管腳,提高系統(tǒng)效率。但由于實現(xiàn)PFC是靠DCM和原邊起始電流為0這兩個先決條件保證的,所以在CCM或非準(zhǔn)諧振模式工作的系統(tǒng)中應(yīng)用受限。后者稱之為乘法器PFC方案。其優(yōu)點是不受工作模式及原邊電流起始值的影響,只需考慮最后的電流峰值是否跟蹤輸入電壓。這是一種更為直接的控制,能夠得到更高的PF值。但這同時也增加了芯片設(shè)計者的設(shè)計難度,需要保證乘法器的寬廣線性度和THD等指標(biāo),并且也增加了芯片面積。PT4209為了得到更好的系統(tǒng)性能,采用了乘法器PFC方案。
 

表2:PF值。

為了節(jié)省副邊反饋網(wǎng)絡(luò)和光耦等元件,在小功率應(yīng)用場合,一般電路采用PSR(原邊反饋)控制方式。該法適用于對輸出精度、輸入調(diào)整率、負(fù)載調(diào)整率要求不高,負(fù)載不會突然變化的場合,并且該法在輸入突變時也加快了系統(tǒng)的保護。LED驅(qū)動電源正好滿足上面的應(yīng)用條件。其副邊電流反饋公式為:
 
 
 

表1:輸入電壓調(diào)整率及負(fù)載調(diào)整率。

芯片采樣Vcs和tdis/T兩個信號,再將兩個信號相乘和Vref相比較;兩者的差值經(jīng)過一個跨導(dǎo)放大器(gm)和Ccomp電容濾波,再將濾波的結(jié)果和Vin的采樣結(jié)果Vins一起送入到乘法器相乘;乘法器輸出即為Vcs的給定信號,芯片以此來控制開關(guān)管的關(guān)斷。其芯片內(nèi)部的邏輯框圖如圖1所示。
 

圖1:PT4209內(nèi)部的邏輯框圖。

在開關(guān)管關(guān)斷后,為了最大限度減小開關(guān)損耗,希望在Vds最小時打開開關(guān)管。這就要求芯片有谷底檢測的功能,即所謂的準(zhǔn)諧振控制。其諧振周期由變壓器原邊電感Lp與MOS管輸出電容Cd (或稱Coss)共同決定,公式為:
 
 

系統(tǒng)參數(shù)及原理圖

PT4209的功率應(yīng)用范圍為5W~30W。以一款應(yīng)用于PAR38燈具的16W驅(qū)動電源為例,系統(tǒng)的性能參數(shù)如下:輸入電壓85V~264V;輸出電壓3.2V*16=51.2V(16個LED串聯(lián));輸出電流320mA;變壓器骨架選擇PQ2016,原邊電感量選0.65mH,保證在264V高壓輸入下,最高開關(guān)頻率小于150kHz。系統(tǒng)原理圖如圖2所示。
 

圖2:16W PAR38燈具電路原理圖。
PF值的影響因素及提高手段

系統(tǒng)PF值的高低,主要與輸入電流和輸入電壓的相角差和輸入電流的THD兩個因素有關(guān)。計算公式為:
 

其中:V1、I1為基波有效值;Vin、Iin為總的有效值。
 

其中:Ik為k次諧波的有效值。


 
首先,芯片控制的是輸入峰值電流的正弦化,而PF計算的是平均電流的正弦化,這里相差一個占空比D。公式為:
 

其中:ton、Lp、Vr在一個周期內(nèi)恒定,所以
 
 

,并不是一個正弦,而是一個削頂?shù)臏?zhǔn)正弦波形。這勢必會影響一些PF值,這也就是峰值電流控制的芯片PF值始終不能達到1的根本原因。

接下來,由上面的邏輯框圖可知,要保證乘法器的輸出是一個良好的正弦波形,這個和三個因素有關(guān):第一是Vcomp電容要足夠大,才能濾去100Hz的工頻紋波。但該電容也不能選擇過大,否則會使得上電后抽取過多Vcs電容的能量而導(dǎo)致UVLO出現(xiàn)。選擇過小,則會出現(xiàn)輸入電流波形向前偏的現(xiàn)象,且該現(xiàn)象因為輸入電壓的升高而日趨嚴(yán)重。因為Vcomp上紋波大小不變,但穩(wěn)態(tài)值變小,相應(yīng)紋波所占比例越大。第二是整流橋后端電容Cin要足夠小,才能保證良好的正弦波形。此外,電容過大的話,電容上的充放電電流會和原邊電流疊加,也會使得輸入電流向前偏。但Cin也不能太小,否則會使得輸入電壓的開關(guān)紋波變大。極端情況下,僅靠Cin已不足以維持一個開關(guān)周期的開通,而前端又有電感使得電流不能突變,從而導(dǎo)致輸入電流波形紊亂。同時,過小的Cin也不利于對差模干擾的抑制。第三,乘法器要求有寬廣的線性度。

上面解決的是cos?,而沒有考慮THD的影響。首先,乘法器要有良好的THD;再次,開關(guān)頻率要盡可能抬高來降低輸入電流紋波;最后,在電源進線端要選擇電感匹配,這樣才能做到高的PF值。

恒流精度的影響因素和提高手段

根據(jù)公式(3),恒流精度受兩個因素影響:一是每個周期Vcs的峰值檢測。由于芯片內(nèi)部比較器的延時等因素,真正檢測到最終的峰值難度很大(往往檢測值都要小于真實的峰值)。這也是影響系統(tǒng)線調(diào)整率的主要因素。二是tdis/T的檢測,其關(guān)鍵又在于tdis的檢測。tdis的檢測一個是開始點的確定,一個是結(jié)束點的確定。

PT4209中以DET腳超過1.25V為開始點的起始點。這個點和實際的真實開始點略有超前(相當(dāng)于加進去一個tdis的小量),正好補償因為Vcs的峰值檢測漏掉的一點峰值。此外,這個上升時間量和Vin+ Vr/sub>大小成正比,所以就算對線調(diào)整率有影響也非常有限。另一端,如何判斷tdis時間的結(jié)束,無論對于PSR恒壓還是恒流,都是至關(guān)重要的一環(huán)。由于真正檢測到該點有一定難度,市面上一般的芯片都只是簡單地采取判斷DET腳過零來近似認(rèn)為是tdis的結(jié)束。好一點的芯片會在內(nèi)部減去一個預(yù)先設(shè)定好的時間,但一旦系統(tǒng)選擇不一樣的參數(shù),則補償?shù)慕Y(jié)果不是偏大就是偏小。有些還需要在MOS管DS兩端掛電容或在DET腳對地掛電容來進行補償。

PT4209采用了先進的自適應(yīng)判斷方法。在輸出二極管關(guān)斷后,芯片內(nèi)部記錄振蕩周期,并將其補回到下一個周期的tdis的計算中。這樣做不僅可以保證精確的采到tdis,系統(tǒng)不需要增加任何元件,也使得芯片對不同系統(tǒng)的適應(yīng)性更強。

此外,對于PCB的走線,Rcs的地要和芯片地接在同一點;整流橋后端電容、變壓器原邊、MOS管和Rcs四個元件組成的回路要盡可能??;芯片DRV腳、Rdrv和MOS管G極組成的驅(qū)動回路也要盡可能短。這樣才能保證Vcs的峰值檢測盡可能準(zhǔn)確。

系統(tǒng)效率和啟動時間的影響因素和提高手段

前文已經(jīng)提到,PT4209采用準(zhǔn)諧振開通的方式,在低壓甚至零壓時開通MOS管,極大降低了開關(guān)管的開通損耗。實際參數(shù)設(shè)計時,在保證MOS耐壓安全的前提下,可以盡量提高反射電壓Vr的值,進一步降低高壓輸入時的開關(guān)損耗。適當(dāng)增加RCD snubber(電壓關(guān)斷型緩沖器)電路的Vclamp值,減小Rdrv值,也能加快開關(guān)速度,降低開關(guān)損耗。但該法會惡化系統(tǒng)EMI性能,需要折中考慮。

另外,由于PT4209這類芯片拓?fù)浣Y(jié)構(gòu)的固有特點,原邊需要進行PFC。輸入電容較小,抑制輸入交流紋波的任務(wù)落在了輸出電容之上,加之對于輸出電壓紋波有小于5%(一級標(biāo)準(zhǔn))的要求,輸出電容會選擇的較大。這樣要使上電后不出現(xiàn)UVLO,Vcc電容也要適當(dāng)加大,而Rst電阻因為效率問題一般要選1M以上,更加減慢了上電時間。PT4209借鑒了開關(guān)電源中常用的加速啟動的方法,上電后強制拉高Vcomp值,啟動時原邊以O(shè)CP方式工作。然后,再通過閉環(huán)控制將Vcomp值降到正常值。通過此方法,能夠使得系統(tǒng)在全電壓輸入范圍內(nèi),將啟動時間控制在0.5s以內(nèi)。這樣做在一些特定的系統(tǒng)中,可能會造成LED啟動過流的現(xiàn)象,但由于人眼的視覺暫留,一般很難被人眼所察覺。同時,系統(tǒng)也可以通過減小Ccomp、增大Vins采樣分壓變比、增大Cout、降低Vr或?qū)ET腳1.25V時對應(yīng)的Vout抬高等多種手段,避免過沖的發(fā)生。

系統(tǒng)測試波形和實驗數(shù)據(jù)

系統(tǒng)測試波形和實驗數(shù)據(jù)如圖3所示。實測LED啟動時間小于0.5s,效率高于90%。另外,PT4209還具有PWM調(diào)光、模擬調(diào)光兩個調(diào)光功能,調(diào)光信號從DIM腳輸入,能夠輕松做到1%以下的調(diào)光精度,整個調(diào)光過程線性度也非常好。如果用戶需要帶可控硅調(diào)光的功能,在PT4209的基礎(chǔ)上,華潤矽威公司又同步推出了帶可控硅調(diào)光的芯片PT4208。該芯片所需外圍元件較少,真正做到了無閃爍TRIAC調(diào)光。上述兩款芯片的詳細(xì)系統(tǒng)設(shè)計過程和測試數(shù)據(jù)可以參考PT4209、PT4208的芯片手冊和應(yīng)用說明。
 

圖3:系統(tǒng)測試波形和實驗數(shù)據(jù)。

本文小結(jié)

本文詳細(xì)分析了帶PFC的原邊反饋準(zhǔn)諧振芯片PT4209系統(tǒng)設(shè)計中的若干難點,并對于如何提高系統(tǒng)PF值、輸出電流精度及系統(tǒng)效率,做了詳細(xì)的理論分析和試驗驗證。從試驗結(jié)果可以看出,采用PT4209芯片的LED驅(qū)動系統(tǒng)具有高功率因數(shù)(>0.95)、高恒流精度(<±3%)、高效率(>90%)和快速啟動(<0.5s)等諸多優(yōu)點。該芯片是一款十分優(yōu)秀的LED恒流驅(qū)動芯片。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。