《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應(yīng)用 > 基于Hilbert分形結(jié)構(gòu)的RFID標簽天線設(shè)計
基于Hilbert分形結(jié)構(gòu)的RFID標簽天線設(shè)計
摘要: Hilbert分形結(jié)構(gòu)天線由于其具有空間填充特性,有利于RFID標簽天線的小型化設(shè)計。隨著分形階數(shù)的不斷增加,與二維Hilbert標簽天線相比,一維Hilbert標簽天線在具備尺寸縮減特性的同時,有效地保持了天線的效率不急劇下降。運用一維Hil2bert標簽天線,可以實現(xiàn)諧振在915MHz的小型化高效率的RFID標簽天線。
Abstract:
Key words :

現(xiàn)代社會產(chǎn)品越來越豐富,數(shù)據(jù)管理需求也越來越高,人們需要將多種多樣處于生產(chǎn)、銷售、流通過程中的物品進行標識、管理和定位。采用傳統(tǒng)的條形碼進行物品標識將會帶來一系列的不便:無法進行較遠距離的識別,需要人工干預(yù)、許多物品無法標識等等。相反,由于射頻識別fRFID1系統(tǒng)采用具有穿透性的電磁波進行識別,所以可以進行較遠距離的識別,無須人工干預(yù),可以標識多種多樣的物品。

  射頻識別技術(shù)是一種非接觸的自動識別技術(shù)。它是由電子標簽(Tag/TranspONder)、讀寫器(Reader/Interrogator)及中間件(Middle-Ware)~部分組成的一種短距離無線通信系統(tǒng)。射頻識別中的標簽是射頻識別標簽芯片和標簽天線的結(jié)合體。標簽根據(jù)其工作模式不同而分為主動標簽和被動標簽。主動標簽自身攜帶電池為其提供讀寫器通信所需的能量:被動標簽則采用感應(yīng)耦合或反向散射工作模式,即通過標簽天線從讀寫器中發(fā)出的電磁場或者電磁波獲得能量激活芯片,并調(diào)節(jié)射頻識別標簽芯片與標簽天線的匹配程度,將儲存在標簽芯片中的信息反饋給讀寫器。因此。射頻識別標簽天線的阻抗必須與標簽芯片的輸入阻抗共軛匹配,以使得標簽芯片能夠最大限度地獲得射頻識別讀寫器所發(fā)出的電磁能量。此外,標簽天線設(shè)計時還必須考慮電子標簽所應(yīng)用的場合,如應(yīng)用在金屬物體表面的標簽天線和應(yīng)用在普通物體表面的標簽天線在天線的結(jié)構(gòu)和選材上存有很大的差別。適合于多種芯片、低成本、多用途的標簽天線是射頻識別在我國得到廣泛普及的關(guān)鍵技術(shù)之一。

  本文分析了一維和二維Hilbert分形結(jié)構(gòu)的RFID標簽天線,并對兩種分形標簽天線分別比較了其長度、諧振頻率、反射系數(shù)及方向圖隨分形階數(shù)的變化關(guān)系。 仿真結(jié)果表明,一維Hilbert分形標簽天線在尺寸縮減的同時,具有較高的天線效率,適合于RFID標簽應(yīng)用。

  1 Hilbert分形天線的幾何描述

  0至4 階的Hilbert分形結(jié)構(gòu)如圖1 所示。 Hil2bert天線是1 /3等邊分形天線, 0階Hilbert天線各邊長均為h. n階Hilbert天線總長度為

 

 

由圖1可見, Hilbert天線輪廓的總面積保持不變,為h2. 隨著Hilbert分形迭代階數(shù)的增加, Hilbert曲線的長度呈指數(shù)上升,趨近于無窮大,逐漸填充整個輪廓,此,Hilbert分形天線具有空間填充特性。

 

  圖1 0~4階Hilbert分形結(jié)構(gòu)

  2 二維Hilbert分形標簽天線分析

  根據(jù)圖1中的Hilbert分形結(jié)構(gòu),文中提出了如圖2所示的二維Hilbert標簽天線結(jié)構(gòu)。 本文取Hil2bert標簽天線外部等邊長h = 54mm, 0階Hilbert標簽天線諧振頻率為915MHz. 用矩量法對0~2階的二維Hilbert標簽天線進行仿真,結(jié)果如圖3, 4 所圖3 二維Hilbert分形標簽天線的方向圖仿真結(jié)果

 

圖2 二維Hilbert分形標簽天線結(jié)構(gòu)

 

圖3 二維Hilbert分形標簽天線的方向圖仿真結(jié)果

  從圖3和表1可以看出,相對于相同縱向長度的普通偶極子天線,隨著分形階數(shù)的增加, 0~2階二維Hilbert標簽天線的方向圖基本保持不變,但諧振頻率逐漸減?。?2階二維Hilbert標簽天線的諧振頻率約為410MHz,若要保持諧振頻率為915MHz,則2階二維Hilbert標簽天線的等邊長度約為0. 46 h.

  雖然Hilbert分形結(jié)構(gòu)有效地減小了天線的電長度,然而隨著分形階數(shù)的增加,二維Hilbert標簽天線的增益和效率急劇下降, 2階二維Hilbert標簽天線的效率僅為8. 83%. 這表明二維Hilbert分形結(jié)構(gòu)對標簽天線的尺寸縮減是以降低天線增益和天線效率為代價的,不能滿足RFID標簽天線設(shè)計的需要。

 

  圖4 二維Hilbert分形標簽天線的S11曲線

 

表1 二維Hilbert分形標簽天線參數(shù)
3 一維Hilbert分形標簽天線分析

  為了提高Hilbert分形結(jié)構(gòu)的RFID標簽天線的效率,本文提出了另一種形式的Hilbert標簽天線結(jié)構(gòu),如圖5所示。 諧振頻率為915MHz的半波振子天線長度2L = 149mm. 取三等分彎折線,各彎折線段長度均為h = 2417mm,在彎折線部分采用Hilbert分形變換,彎折線天線為0階Hilbert標簽天線。

  用矩量法對一維Hilbert標簽天線進行仿真,結(jié)果如圖6, 7所示,天線參數(shù)見表2.

 

  圖5 一維Hilbert分形標簽天線結(jié)構(gòu)

 

圖6 一維Hilbert分形標簽天線的方向圖仿真結(jié)果

 

圖7 一維Hilbert分形標簽天線的S11曲線

 

  從圖6和表2可以看出,一維Hilbert分形標簽天線的方向圖基本相同,諧振頻率隨階數(shù)的增加不斷下降,但下降幅度逐漸趨緩。 2階一維Hilbert標簽天線的諧振頻率下降到半波偶極子天線諧振頻率的49. 2%時,其天線效率為62. 91% ,是2階二維Hil2bert標簽天線效率(8. 83% )的7. 1倍。 這說明了一維Hilbert結(jié)構(gòu)的分形天線在縮減天線尺寸的同時,能夠保持標簽天線的性能不急劇下降。 經(jīng)過推算,在915MHz諧振頻率下, 2 階一維Hilbert分形標簽天線的兩臂長度約為半波振子天線長度的50% ,具有較好的尺寸縮減特性。

 

  表2 一維Hilbert分形標簽天線參數(shù)

4 試驗測試

根據(jù)前面Hilbert天線的仿真結(jié)果,制作了如圖8所示的1階一維Hilbert分形標簽天線。

 

  圖8 1階一維Hilbert分形標簽天線

  天線兩端的直線長度為50mm, Hilbert分形高度為20mm,饋點間距1mm,測得915MHz頻率處天線的等效輸入阻抗為15 + j245. 采用的標簽IC是Atmel公司的ATA5590,芯片IC端口阻抗為12 -j217,符合RFID國際標準EPC Class1 Gen2.

  使用的閱讀器是AW ID公司的MPR23014閱讀器,支持EPC Class1 Gen2 標準。 在天線輻射功率4W、中心頻率915MHz、標簽天線面與閱讀器天線面水平的試驗條件下,閱讀距離為5. 6m. 根據(jù)報導(dǎo),偶極子RFID 標簽在RFID 閱讀器輸出4W射頻功率的條件下可以達到7. 2m的識別距離。實驗結(jié)果顯示,本文制作的RFID 標簽天線的性能基本達到應(yīng)用的要求。

  5 結(jié)論

  Hilbert分形結(jié)構(gòu)天線由于其具有空間填充特性,有利于RFID標簽天線的小型化設(shè)計。 隨著分形階數(shù)的不斷增加,與二維Hilbert標簽天線相比,一維Hilbert標簽天線在具備尺寸縮減特性的同時,有效地保持了天線的效率不急劇下降。 運用一維Hil2bert標簽天線,可以實現(xiàn)諧振在915MHz的小型化高效率的RFID標簽天線。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。