《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > EDA與制造 > 設(shè)計應(yīng)用 > 基于HFSS的雙脊喇叭天線的設(shè)計與仿真
基于HFSS的雙脊喇叭天線的設(shè)計與仿真
摘要: 引言對喇叭天線而言,最常用的展寬頻帶的方法是在波導(dǎo)部分及喇叭張開部分加入脊形結(jié)構(gòu)。雖然該天線已應(yīng)用于某些工程實際中,但是此類天線在頻率大于12GHz時,增益下降,方向圖主瓣出現(xiàn)分裂,并且隨著頻率的升高,主
關(guān)鍵詞: 天線 喇叭 HFSS
Abstract:
Key words :

引 言

喇叭天線而言,最常用的展寬頻帶的方法是在波導(dǎo)部分及喇叭張開部分加入脊形結(jié)構(gòu)。雖然該天線已應(yīng)用于某些工程實際中,但是此類天線在頻率大于12 GHz時,增益下降,方向圖主瓣出現(xiàn)分裂,并且隨著頻率的升高,主瓣凹陷得越來越厲害。這對方向圖要求高的場合,如將天線用作主反射面饋源、EMC測試,已不能滿足要求。針對這一問題,本文利用Ansoft公司推出的HFSS電磁仿真軟件,通過做大量的仿真實驗,設(shè)計了一幅頻率范圍為1~18GHz的寬帶喇叭天線,它的增益在整個頻段大于10 dB,方向圖在15 GHz時,主瓣才開始出現(xiàn)分裂,并且隨著頻率的升高,直到18 GHz主瓣也沒有出現(xiàn)大的凹陷,這樣的結(jié)果比較理想,可以滿足更高的工程要求。

1 寬帶雙脊喇叭天線的設(shè)計

基于電磁仿真軟件HFSS,通過做大量的仿真實驗,得到寬帶雙脊喇叭天線結(jié)構(gòu)模型如圖1所示,它由3部分組成:饋電部分,脊波導(dǎo)部分,喇叭張開部分。各部分的具體設(shè)計過程如下。


1.1 脊波導(dǎo)部分設(shè)計

脊波導(dǎo)部分的橫截面示意圖如圖2所示,波導(dǎo)的橫截面尺寸為a×6,脊寬為a1,脊間距為b1,設(shè)計時主要依據(jù)脊波導(dǎo)理論。在設(shè)計時,首先確定b/a,b1/b,a1/a的值,然后參考文獻[4]的曲線就可得λCE10/A匹,λCE30/a及頻率為無窮大時TE10模的特性阻抗z0∞的值,通過式(1)算出在給定工作頻率f下的特性阻抗以便于饋電段的設(shè)計:


為了改善饋電段到喇叭段的匹配,讓它的橫截面尺寸逐漸增大,所以這部分的整體結(jié)構(gòu)設(shè)計成一個E面的扇形喇叭,再在兩個窄壁面上加2個楔體以改善高頻端的方向圖。


1.2 饋電部分的設(shè)計

饋電部分的結(jié)構(gòu)示意圖見圖3,通常采用N型同軸接頭饋電,同軸線的外導(dǎo)體連在波導(dǎo)的側(cè)壁上,同軸線的內(nèi)導(dǎo)體通過第一個脊的腔體,連到第二個脊上形成短路,內(nèi)導(dǎo)體在波導(dǎo)腔內(nèi)可看作一單極輻射器,由于普通波導(dǎo)的阻抗遠大于同軸線的阻抗,因此內(nèi)導(dǎo)體必須終止在遠離波導(dǎo)壁的地方,以防止失配,而脊波導(dǎo)的阻抗與同軸線的阻抗相一致,所以同軸線的內(nèi)導(dǎo)體必須接在相對的脊上以利于匹配。最后,再在脊波導(dǎo)的后端加一段直波導(dǎo)(長度應(yīng)小于最高工作頻率的半個波長),作為濾除被激勵出來的TE20模,因此脊波導(dǎo)的可用帶寬應(yīng)是λc10/λc30,而不是λc10/λc20.顯而易見,單模工作帶寬被大大的加寬了。


1.3 喇叭段的設(shè)計

喇叭段的長度應(yīng)大于最低工作頻率波長的一半,這樣才能保證阻抗轉(zhuǎn)換過程中不激起高次模。喇叭的口面按照常規(guī)喇叭的設(shè)計方法,根據(jù)增益與口徑面相差的要求來確定,因為場分布主要集中在兩個脊的附近,所以考慮加工后實際喇叭的重量可以將兩個窄壁面去掉,這樣對低頻端的方向圖稍有影響,經(jīng)過反復(fù)的調(diào)整,最后兩個窄壁面采用介質(zhì)板,并在其上均勻分布6條很窄的金屬片,脊的形狀根據(jù)阻抗匹配原則設(shè)計。為了使饋電點阻抗能夠平滑的過渡到喇叭口自由空間阻抗,基于大量的實驗發(fā)現(xiàn),阻抗變換形式為如下所示,具有較好的效果


式中:l是喇叭段的長度,k是常數(shù),它可由喇叭中點的阻抗為兩端阻抗的平均值這樣的條件來確定。因此脊結(jié)構(gòu)的形狀曲線一般也為指數(shù)形式,如式(6)所示。附加的線性項,可起到擴展低頻帶寬的作用。

2 雙脊喇叭天線的仿真

按照上面雙脊喇叭天線的設(shè)計方法,利用電磁仿真軟件HFSS,此軟件擁有強大的天線設(shè)計功能,設(shè)計了1副1~18 GHz的天線并加工成型,它的仿真結(jié)構(gòu)如圖1所示,其具體尺寸為:喇叭口面240 mm×139 mm,喇叭底面86 mm×67 mm,短路板截面26 mm×16 mm,喇叭的軸向長度152 mm,用50 Ω同軸線饋電,N型接頭的芯線半徑為0.65 mm,插入的腔體半徑為1.5 mm,脊曲線方程為


為了分析所設(shè)計天線的方向圖,增益及駐波比,本文不僅給出了電磁仿真軟件HFSS的仿真結(jié)果,而且還給出了微波暗室的測量結(jié)果。為了對這兩個結(jié)果進行比較,將電磁仿真軟件HFSS得到的仿真數(shù)據(jù)和微波暗室得到的測量數(shù)據(jù)分別導(dǎo)入到MATLAB里面,通過MATLAB進行處理,得到了二者電性能特性的比較圖。從圖4可見,VSWR除了在低端1 GHz~1.6 GHz范圍內(nèi)較大外,其余工作點都小于2.5,滿足實際的工程要求。要觀看此天線的增益及方向性,由于頻帶太寬,測量和仿真得到的數(shù)據(jù)量太大,因此我們僅給出了不同頻段上典型頻率點的增益方向圖。其中圖5、圖6為低頻段中心頻點的H面及E面增益方向圖,由圖可見增益很理想,H面及E面都大于13 dB,3 dB主瓣寬度較小,波束集中,隨著頻率的升高增益開始慢慢下降,波束變寬且趨于平坦,當(dāng)?shù)竭_整個頻帶的中心頻點10 GHz時,由圖7、圖8可見,H面增益降為11.5 dB,E面略有下降,3 dB主瓣寬度都增大了,隨著頻率繼續(xù)升高到達13 GHz時,由圖9、圖10可見,H面主瓣波束稍有波動,E面主瓣波束出現(xiàn)1 dB的凹陷,三維方向圖仍是單一的主瓣。當(dāng)f≥15 GHz后,E面及H面方向圖都出現(xiàn)凹陷,三維方向圖才開始出現(xiàn)分裂,如圖11所示,隨著頻率的升高,直到18 GHz主瓣也沒有出現(xiàn)大的凹陷,性能參數(shù)明顯提高了,并且仿真的二維方向圖與測量的二維方向圖除了在兩側(cè)低副瓣區(qū)差異較大外(這主要是因為仿真和測量中饋電喇叭周圍的空間環(huán)境不相同而造成的),在主瓣區(qū)基本是吻合的。這說明所給出的設(shè)計方案是合理的,對天線的電性能特性利用電磁仿真軟件HFSS的分析結(jié)果是有效的。

 

 

 

3 結(jié) 論

本文給出了一個寬帶雙脊喇叭天線的設(shè)計方法,并利用電磁仿真軟件HFSS具體設(shè)計了一幅1 GHz~18 GHz寬帶雙脊喇叭天線。仿真及測量結(jié)果都較為理想,可滿足更高的實際要求,對工程上設(shè)計此類天線具有一定的參考價值。
 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。