《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信与网络 > 设计应用 > 基于OFDM定时捕获的分布式天线位置设计
基于OFDM定时捕获的分布式天线位置设计
来源:电子技术应用2011年第5期
卿朝进, 夏 天, 唐友喜, 查光明
电子科技大学 通信抗干扰技术国家重点实验室, 四川 成都 611731
摘要: 在线形小区中,基站的两分布式接收天线接收来自单天线移动台的发射信号。基于OFDM定时捕获,提出利用最小最大准则进行线形小区中两分布式天线的最优位置设计。根据最小最大准则,最优天线位置根据最坏捕获情况最小化得到。仿真结果表明,当移动台位置在线形小区中均匀分布时,两分布式接收天线应根据线形小区中心对称放置。
中圖分類號: TN914
文獻(xiàn)標(biāo)識碼: A
文章編號: 0258-7998(2011)05-0118-03
Distributed antenna location design based on timing acquisition of OFDM
Qing Chaojin, Xia Tian, Tang Youxi, Zha Guangming
National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology, Chengdu 611731, China
Abstract: In a linear cell, two distributed receive antennas at base station(BS) are assumed for receiving the signal transmitted from the mobile station (MS) with a single antenna. Based on the timing acquisition of OFDM, the optimal antenna location design for the two distributed antennas in the linear cell is proposed according to the minimax criterion. By exploiting the minimax criterion, the optimal antenna locations can be obtained according to the best system performance that the probability of worst case is minimized. Simulation results illustrate that the distributed receive antennas should be located symmetrically about the linear cell center when the distribution of MS location is uniform.
Key words : antenna location design; distributed antenna systems(DAS); orthogonal frequency division multiplexing (OFDM); timing acquisition


    正交頻分復(fù)用OFDM(Orthogonal Frequency Division Multiplexing)技術(shù)能很好地對抗頻率選擇性衰落,因而被廣泛應(yīng)用于諸如無線局域網(wǎng)、數(shù)字廣播電視等無線通信系統(tǒng)中[1]。與此同時,分布式天線系統(tǒng)DAS(Distributed Antenna Systems)具有諸如增加系統(tǒng)的覆蓋、提高系統(tǒng)頻譜效率等優(yōu)點,是第四代移動通信的關(guān)鍵技術(shù)之一[2]。分布式天線與OFDM技術(shù)的結(jié)合,將是一項很有前瞻性的課題。
    然而,分布式天線的位置部署,直接影響著分布式天線系統(tǒng)優(yōu)點的實現(xiàn)[3-5]。通過最小化區(qū)域平均誤碼率,參考文獻(xiàn)[3]研究了線形小區(qū)中,兩根分布式天線的位置設(shè)計。參考文獻(xiàn)[4]將參考文獻(xiàn)[3]的工作擴(kuò)展到圓形小區(qū),通過最大化小區(qū)平均容量進(jìn)行天線位置設(shè)計。類似于參考文獻(xiàn)[3]的最小化區(qū)域平均誤碼率方法,參考文獻(xiàn)[5]在圓形小區(qū)中進(jìn)行多根分布式天線位置部署。然而,這些方法均是在時間和頻率理想同步的情況下提出的。事實上,系統(tǒng)同步性能的好壞嚴(yán)重影響著系統(tǒng)的整體性能。在系統(tǒng)沒有同步的情況下,參考文獻(xiàn)[3-5]的天線位置設(shè)計方法也無從談起。
    為此,本文在考慮OFDM同步性能影響的情況下,進(jìn)行天線位置設(shè)計。由于定時捕獲是同步過程的首要環(huán)節(jié),為方便起見,本文研究基于OFDM定時捕獲的分布式天線位置設(shè)計。根據(jù)最小最大準(zhǔn)則[6],首先利用各分布式接收天線的正確檢測概率,推導(dǎo)出最壞捕獲情況發(fā)生的概率(表示為PWC)。然后再遍歷兩分布式天線所有可取位置組合,最小化PWC,從而得到兩分布式天線的最優(yōu)位置。仿真表明,當(dāng)移動臺位置在線形小區(qū)中均勻分布時,兩分布式接收天線應(yīng)根據(jù)線形小區(qū)中心對稱放置。

 


    考慮兩分布式接收天線位置的所有組合,圖 3給出了最壞情況發(fā)生的次數(shù)與移動臺位置的關(guān)系。從圖 3可以看出,最壞情況主要發(fā)生在線形小區(qū)的邊界,其次是小區(qū)中心位置附近。    

    基于OFDM定時捕獲,本文研究了兩分布式天線在線形小區(qū)中的位置設(shè)計。根據(jù)最小最大準(zhǔn)則,在兩分布式天線的所有位置組合中,最小化最壞捕獲情況的概率,從而得到兩分布式接收天線的最優(yōu)位置。當(dāng)移動臺位置均勻分布于線形小區(qū)時,仿真結(jié)果表明,天線位置應(yīng)根據(jù)小區(qū)中心對稱放置。本文只考慮了兩根分布式天線和線形小區(qū),該方法可被擴(kuò)展到多根分布式天線和其他小區(qū)模型中。
參考文獻(xiàn)
[1] MORELLI M, KUO C C, PUN M O. Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review[J]. Proc. IEEE,2007,95(7):1394-1427.
[2] CASTANHEIRA D,GAMEIRO A. Distributed antenna system capacity scaling[J]. IEEE Wireless Commun.,2010,17(3):68-75.
[3] SHEN Y, TANG Y, KONG T,et al. Optimal antenna location for STBC-OFDM downlink with distributed transmitantennas in linear cells. IEEE Commun. Lett.,2007,11:387-389.
[4] WANG X, ZHU P, CHEN M.Antenna location design for generalized distributed antenna systems.IEEE Commun.Lett.,  2009,13:315-317.
[5] HAN L, TANG Y, SHAO S,et al. On the design of antenna location for OSTBC with distributed transmit antennas in a circular cell. in Proc. IEEE International Conference on Communications (ICC), Cape Town, South Africa, 2010:1-5.
[6] VERDU S,POOR H. On minimax robustness: a general approach and applications[J].IEEE Trans. Inf. Theory,1984,  30(2):328-340.
[7] 3GPP, TS 36.221, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;  Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8),v.8.7.0, May 2009.
[8] SHI K, SERPEDIN E. Coarse frame and carrier synchronization of OFDM systems:a new metric and comparison[J].  IEEE Trans. Wireless Commun.,2004,3(4):1271-1284.
[9] AWOSEYILA A, KASPARIS C, EVANS B. Robust timedomain timing and frequency synchronization for OFDM systems[J]. IEEE Trans. Consum. Electron., 2009,55(2):391-399.
[10] MINN H, BHARGAVA V, LETAIEF K. A robust timing and frequency synchronization for OFDM systems[J].IEEE Trans. Wireless Commun.,  2003,2(4):822-839.
[11] ITU-R M.1225. Guidelines for evaluation of radio transmission technologies for IMT-2000.Recommendation ITURM 1225, 1997.
[12] CATREUX S, DRIESSEN P, GREENSTEIN L. Data  throughputs using multiple-input multiple-output (MIMO)  techniques in a noise-limited cellular environment[J]. IEEE Trans. Wireless Commun.,2002,1(2):226-235.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。