《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > 相位式光纖測(cè)量電路系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
相位式光纖測(cè)量電路系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
李中方 李新碗 楊 潘 李樂(lè)遜
摘要: 本文在FPGA、直接數(shù)字頻率合成(DDS)、數(shù)字鑒相等技術(shù)的基礎(chǔ)上,設(shè)計(jì)并實(shí)現(xiàn)了相位式光纖測(cè)量電路,用于基于光纖的激光測(cè)距校正系統(tǒng)中光纖光程的測(cè)量。本文介紹了相位法測(cè)量的基本原理,對(duì)其電路設(shè)計(jì)和關(guān)鍵技術(shù)的實(shí)現(xiàn)進(jìn)行了論述,并給出了系統(tǒng)的實(shí)際測(cè)量結(jié)果,為光纖光程的測(cè)量和標(biāo)定提供了一個(gè)可行的方案和參考。
Abstract:
Key words :

引言
    光電測(cè)距儀和全站型電子速測(cè)儀(以下簡(jiǎn)稱全站儀)作為一種在多領(lǐng)域廣泛應(yīng)用的計(jì)量?jī)x器,為保證精度和可靠性,必須對(duì)誤差進(jìn)行定期檢定和校正。目前這種檢定多在室外標(biāo)準(zhǔn)基線上采用多段基線組合比較法進(jìn)行。但這種方法成本大,維護(hù)困難,且易受環(huán)境因素的影響,因而國(guó)內(nèi)外一直致力于建立室內(nèi)檢定裝置,以取代室外基線,完成測(cè)距儀的檢定和校正。
    光纖作為一種光傳輸介質(zhì),以其良好的導(dǎo)光性和伸展性,成為激光測(cè)距室內(nèi)校正的理想選擇,已有文獻(xiàn)對(duì)其可行性進(jìn)行了分析?;诖耍覀冄兄崎_(kāi)發(fā)了基于光纖的激光測(cè)距校正系統(tǒng)。在該校正系統(tǒng)中,利用光纖模擬室外基線,使用全站儀對(duì)光纖光程進(jìn)行測(cè)量,其測(cè)量結(jié)果和光纖實(shí)際光程進(jìn)行比較,從而達(dá)到檢定和校正的目的。
    為了得到被測(cè)光纖基線的實(shí)際光程,需要對(duì)光纖的光程長(zhǎng)度進(jìn)行精確測(cè)量。現(xiàn)有的光纖長(zhǎng)度測(cè)量方法有光時(shí)域反射(OTDR)、光頻域反射(OFDR)、干涉法、脈沖法,相位法等。其中相位法測(cè)量范圍較大、精度高,能夠很好地滿足光纖基線的測(cè)量要求。因而,我們利用FPGA、直接數(shù)字合成(DDS)、數(shù)字鑒相等技術(shù),設(shè)計(jì)和實(shí)現(xiàn)了基于相位法的電路測(cè)量系統(tǒng),用于光纖光程的測(cè)量。該測(cè)量系統(tǒng)具有比全站儀更高的測(cè)量精度,從而對(duì)光纖基線的實(shí)際光程進(jìn)行標(biāo)定,以其標(biāo)定長(zhǎng)度與全站儀測(cè)量結(jié)果進(jìn)行比較,完成全站儀的校正。

1 相位法測(cè)量的基本原理
   
相位法激光測(cè)量技術(shù)利用光調(diào)制信號(hào)在發(fā)射端和接收端之間的相位差來(lái)實(shí)現(xiàn)對(duì)被測(cè)目標(biāo)距離量或長(zhǎng)度量的測(cè)量。
利用相位法測(cè)量光纖光程如圖1所示,一段光程為的光纖,其輸入輸出端分別為A、B,在A端輸入經(jīng)調(diào)制的光信號(hào),在光纖中傳輸后在B點(diǎn)輸出。設(shè)調(diào)制信號(hào)在A的相位為φ0,在B點(diǎn)的相位為φ1,那么通過(guò)檢測(cè)兩端之間的相位差△φ=φ1-φ0,可得到L值。


    設(shè)光調(diào)制信號(hào)的頻率為f,光速為v,則信號(hào)波長(zhǎng)λ=v/f,那么。
    調(diào)制信號(hào)可認(rèn)為是相位法測(cè)量的度量標(biāo)尺,稱之為“測(cè)尺”。測(cè)尺頻率越大,測(cè)量精度越高。由于測(cè)尺信號(hào)的周期重復(fù)性,使用一把測(cè)尺不能實(shí)現(xiàn)長(zhǎng)度的準(zhǔn)確測(cè)量。因而使用一組(兩個(gè)或以上)測(cè)尺一起對(duì)三進(jìn)行測(cè)量,可同時(shí)保證測(cè)量的精度和范圍,得到準(zhǔn)確測(cè)量值。

2 相位法測(cè)量的電路實(shí)現(xiàn)
2.1 電路實(shí)現(xiàn)方案
   
利用相位法對(duì)光纖光程進(jìn)行測(cè)量的電路框圖如圖2所示。


    在該系統(tǒng)中,上位機(jī)PC接收用戶的測(cè)量指令,通過(guò)USB接口發(fā)送到下位系統(tǒng)的FPGA中,F(xiàn)PGA對(duì)指令進(jìn)行解析,控制頻率信號(hào)產(chǎn)生電路產(chǎn)生主振信號(hào)和本振信號(hào)。
    主振信號(hào)通過(guò)調(diào)制器對(duì)光源發(fā)出的光進(jìn)行調(diào)制,調(diào)制光在被測(cè)光纖中傳輸后由光電轉(zhuǎn)換器得到測(cè)量信號(hào)。原主振信號(hào)作為參考信號(hào)與測(cè)量信號(hào)分別和本振信號(hào)進(jìn)行混頻,然后經(jīng)信號(hào)整形后送入FPGA進(jìn)行鑒相得到兩者相位差,該相位差包含了被測(cè)光纖的長(zhǎng)度信息。FPGA通過(guò)相位差計(jì)算得到光纖光程,然后通過(guò)USB接口發(fā)送到上位機(jī)PC,顯示給用戶。實(shí)際測(cè)量中,按照以上流程,依次產(chǎn)生兩組不同頻率的測(cè)量信號(hào),實(shí)現(xiàn)對(duì)光纖光程的準(zhǔn)確測(cè)量。
2.2 系統(tǒng)關(guān)鍵技術(shù)的實(shí)現(xiàn)
2.2.1 FPGA單元的實(shí)現(xiàn)
    FPGA單元使用Altcra DE2開(kāi)發(fā)板實(shí)現(xiàn),構(gòu)建SOPC系統(tǒng),調(diào)用開(kāi)發(fā)板中USB組件實(shí)現(xiàn)與上位機(jī)的數(shù)據(jù)交互,利用NIOS II處理器進(jìn)行信息處理、指令解析和測(cè)量計(jì)算。
    同時(shí)使用Verilog HDL語(yǔ)言編寫(xiě)頻率信號(hào)控制模塊和鑒相模塊。前者用于對(duì)頻率信號(hào)產(chǎn)生電路進(jìn)行控制,后者對(duì)測(cè)量后的信號(hào)進(jìn)行相位差檢測(cè)。其實(shí)現(xiàn)框圖如圖3所示。


2.2.2 頻率信號(hào)產(chǎn)生電路的實(shí)現(xiàn)
   
頻率信號(hào)產(chǎn)生電路在FPGA中頻率控制模塊的控制下,產(chǎn)生高精度正弦主振信號(hào)和本振信號(hào),分別用于光調(diào)制和混頻。此電路產(chǎn)生的信號(hào)要求頻率可調(diào),且具有高的頻率穩(wěn)定性和低的相位噪聲,相位抖動(dòng)小,以保證最終的測(cè)量精度。
    在本系統(tǒng)中,我們基于直接數(shù)字頻率合成(DDS)技術(shù)進(jìn)行信號(hào)產(chǎn)生。DDS的實(shí)現(xiàn),使用芯片AD9951。AD9951是一個(gè)可控的頻率合成芯片,具有32位頻率轉(zhuǎn)換字,最大合成頻率為160MHz。系統(tǒng)中采用兩塊AD9951,分別產(chǎn)生主振信號(hào)和本振信號(hào)。FPGA通過(guò)該芯片的控制端口,對(duì)
其產(chǎn)生的信號(hào)頻率進(jìn)行控制。其控制時(shí)序如圖4所示。


    AD9951產(chǎn)生的頻率信號(hào)具有一定的雜散,系統(tǒng)中使用七階橢圓低通濾波器進(jìn)行濾波,然后使用運(yùn)算放大器AD8007進(jìn)行信號(hào)放大。電路框圖如圖5所示。該電路產(chǎn)生的50MHz的正弦信號(hào)如圖6所示。

     


2.2.3 混頻鑒相電路
   
由于測(cè)量信號(hào)頻率較高,直接對(duì)其進(jìn)行鑒相難以達(dá)到良好的鑒相精度,因而在系統(tǒng)中采用混頻的方法進(jìn)行差頻鑒相。在差頻鑒相中,參考信號(hào)和測(cè)量信號(hào)同時(shí)與本振信號(hào)進(jìn)行混頻,濾除混頻后高頻分量,得到混頻后低頻參考信號(hào)和混頻后低頻測(cè)量信號(hào)。混頻降低了信號(hào)頻率,但保持相位差不變,便于鑒相操作。相位差的檢測(cè)使用自動(dòng)數(shù)字鑒相法。其原理如圖7所示。參考信號(hào)和測(cè)量信號(hào)通過(guò)過(guò)零比較,得到參考方波信號(hào)和測(cè)量方波信號(hào)。比較兩方波信號(hào),得到兩者之間的相位差信號(hào),然后使用高頻計(jì)數(shù)脈沖對(duì)相位差信號(hào),然后使用高頻計(jì)數(shù)脈沖對(duì)相位差信號(hào)進(jìn)行計(jì)數(shù)。設(shè)參考信號(hào)和測(cè)量信號(hào)的周期為f,高頻計(jì)數(shù)脈沖的頻率為fc,一個(gè)周期內(nèi)的計(jì)數(shù)值為M,則相位差為:△φ=2πMf /fc。為了減小偶然誤差,提高鑒相精度,可以對(duì)多個(gè)周期計(jì)數(shù)求平均。設(shè)N個(gè)周期的計(jì)數(shù)值為M',則△φ=2πM'f/Nfc。


    混頻電路的實(shí)現(xiàn)基于混頻器AD831。使用兩片AD831,分別用于參考信號(hào)與本振信號(hào)混頻及測(cè)量信號(hào)與本振信號(hào)混頻?;祛l后使用芯片MAX274進(jìn)行帶通濾波,得到混頻后的低頻正弦信號(hào)。然后通過(guò)基于MAX912的過(guò)零比較電路將正弦信號(hào)轉(zhuǎn)換為同相位差的方波信號(hào),輸入到FPGA中進(jìn)行鑒相。在FPGA中,利用多周期自動(dòng)數(shù)字鑒相法,對(duì)相位差進(jìn)行檢測(cè)。其實(shí)現(xiàn)框圖如圖8所示。



3 測(cè)量結(jié)果
   
在實(shí)際測(cè)量中,利用組合測(cè)尺頻率先后進(jìn)行兩次測(cè)量。第一次取主振信號(hào)頻率為52MHz,本振信號(hào)頻率為51.99MHz;第二次取主振信號(hào)頻率為51MHz,本振信號(hào)頻率為50.99MHz。對(duì)應(yīng)于混頻后信號(hào)頻率為10kHz。FPGA中鑒相高速計(jì)數(shù)脈沖頻率為50MHz?;谝陨蠀?shù),對(duì)多段光纖進(jìn)行測(cè)量。兩次測(cè)量的結(jié)果進(jìn)行分析比較,可得到測(cè)量值。被測(cè)光纖的實(shí)際光程已由精密反射儀通過(guò)光學(xué)方法進(jìn)行標(biāo)定。測(cè)量結(jié)果如表1所示。


    由以上測(cè)量結(jié)果可以看到,在一定的量程范圍內(nèi),基于相位法的測(cè)量系統(tǒng),對(duì)光纖光程的測(cè)量誤差絕對(duì)值小于2mm。

4 結(jié)論
    本文在FPGA、直接數(shù)字頻率合成(DDS)、自動(dòng)數(shù)字鑒相等技術(shù)的基礎(chǔ)上,設(shè)計(jì)并實(shí)現(xiàn)了基于相位法的電路測(cè)量系統(tǒng)。實(shí)際測(cè)量結(jié)果表明,此測(cè)量系統(tǒng)在一定的量程范圍內(nèi),對(duì)光纖光程的測(cè)量誤差絕對(duì)值小于2mm。在此測(cè)量水平下,此測(cè)量系統(tǒng)可用于基于光纖的激光測(cè)距校正與檢定中,對(duì)其中的光纖基線進(jìn)行測(cè)量和標(biāo)定,這為光電測(cè)距儀和全站儀的室內(nèi)檢定提供了一個(gè)可行的方案和參考。
    本文所論述的相位法測(cè)量的電路實(shí)現(xiàn)是一個(gè)初步方案,在電路設(shè)計(jì)、系統(tǒng)優(yōu)化和誤差分析等方面還需要做進(jìn)一步的改進(jìn),以提高系統(tǒng)性能。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。