0 引 言
信息社會的高速發(fā)展使人們對筆記本電腦的依賴與日俱增,希望能隨時隨地獲取信息,但筆記本電腦的使用時間總是不盡人意。有了車載電源,無論是在公路上,還是在野外,用戶均不必?fù)?dān)心自己的電腦因電力不足而無法工作。目前,市面上不少車載電源,是先將汽車蓄電池的12 V電壓升高到AC220 V,再通過電腦本身的適配器給筆記本供電。但是,兩次電壓變換導(dǎo)致效率降低,汽車蓄電池的電量很快被用光,導(dǎo)致車上其它用電設(shè)備工作異常。本設(shè)計是將汽車點煙器輸出的12 V直流電源直接轉(zhuǎn)換為可供絕大多數(shù)型號筆記本使用的19 V電壓,可調(diào)整的范圍在±0。5 V。輸入電壓的范圍在10 V~15 V。即使輸入電壓有較大的波動,輸出電壓也有較好的調(diào)節(jié)能力。
1 升壓轉(zhuǎn)換器的工作原理
汽車點煙器輸出的直流電壓為12 V,即使在發(fā)動機運行時也不超過13 .8 V,低于筆記本電腦通常所需的19 V電壓。利用升壓轉(zhuǎn)換器來完成電壓的轉(zhuǎn)換,基本電路如圖1 所示,它由電源開關(guān)T、二極管D、儲能電感L 和濾波電容C 組成。電感不斷充放電,感應(yīng)電壓加到電源電壓上由此產(chǎn)生的輸出電壓就高于汽車點煙器所提供的電壓。
dc9fc131c.jpg" style="filter: ; width: 498px; height: 190px" />
圖1 升壓轉(zhuǎn)換器電路結(jié)構(gòu)
升壓轉(zhuǎn)換電路可看作受兩個開關(guān)控制,電源開關(guān)S 和二極管D。在任何特定時間內(nèi)只允許其中一個開關(guān)閉合,電路的兩種工作狀態(tài)如圖2 所示。
(1)S 導(dǎo)通,D 截止時:輸入直流電源UIN經(jīng)電感線圈L 和開關(guān)S 形成IIN電流通路。直流電源向電感充電,電感L 的電流線性增加,電能以磁能形式存儲在線圈中。此時,二極管D 反偏,輸出負(fù)載電流IOUT由原來存儲在電容C 上的能量來提供,如圖2(a)所示。
(2)S 截止,D 導(dǎo)通時:由于電感L 中的電流不能躍變,將在線圈中感應(yīng)出如圖2 (b)所示的反極性感生電壓。因此,感生電壓的極性為左負(fù)右正。此時的二極管D 進(jìn)入正向?qū)顟B(tài),原來在S 導(dǎo)通期間存儲在電感線圈中的能量通過二極管D 提供給電容C 和負(fù)載RL 。C 在此階段充電的能量在下一個S 截止的期間提供給負(fù)載RL 。
圖2 升壓轉(zhuǎn)換器的原理:接通階段(a)和關(guān)閉階段(b)
令電源開關(guān)S 占空比為D1 ,二極管D 占空比為D2 。由于在任何時刻只有一個開關(guān)導(dǎo)通,則:
輸入電壓記為UIN,輸出電壓記為UOUT。若S 導(dǎo)通,輸入電源電壓將被電感吸收,在S 上不會產(chǎn)生壓降。如果D 導(dǎo)通時間足夠長,電感L 可看作短路,也不會有壓降。忽略二極管正向?qū)▔航担琔IN和UOUT的關(guān)系推導(dǎo)如下:
由于D1 <1 ,因此,輸出電壓大于輸入電壓。另外,兩個開關(guān)還能調(diào)節(jié)輸出電壓。若輸出電壓高于19 V,則必須迫使輸出電壓下降。S 導(dǎo)通,D 截止使得電容和負(fù)載脫離電路的其它部分。此時,電容充當(dāng)負(fù)載的電源。放電使得電容兩端的電壓降低,即降低了輸出電壓。若輸出電壓低于19 V,那么必須提高輸出電壓。使S 截止,D 導(dǎo)通,電流流經(jīng)二極管D、電容C和負(fù)載RL形成回路。由于電流向電容充電,使得電容兩端的電壓增加,使輸出電壓也增加。
2 PWM 控制
升壓轉(zhuǎn)換器中的電源開關(guān)S,用一個工作在開關(guān)狀態(tài)的功率MOSFET 管實現(xiàn),見圖2 。在柵極加上一系列脈沖后,功率管將不斷地處于通斷交替的狀態(tài),改變通斷的時間比率,就可以調(diào)節(jié)輸出電壓的大小。假設(shè)一個周期為t ,t =tON時,脈寬調(diào)制脈沖的正脈沖被送到功率管的柵極,K導(dǎo)通;當(dāng)t =tOFF時,送到K管上的調(diào)制脈沖變成零伏或負(fù)偏壓,S 處于截止?fàn)顟B(tài)。
上式表明了輸出電壓UOUT和功率管開關(guān)時間之間的關(guān)系。由于tOFF時間較短,采用低功耗的二極管和電容,使其不超過安全工作區(qū),否則,可能會導(dǎo)致器件過熱而損壞。該升壓轉(zhuǎn)換器的電流和電壓波形如圖3 所示。
圖3 占空比50 %時電壓和電流波形
波形(3)顯示電感線圈的紋波電流,增大線圈的尺寸能降低紋波,但同時也增加了器件的物理尺寸。線圈不能太小,否則無法在MOSFET 截止時提供足夠的能量,使輸出電壓的調(diào)節(jié)能力變差。本設(shè)計用到的線圈為56 μH。
所有的控制功能由Unitrode 公司生產(chǎn)PWM 芯片UC3843 來完成,它具有反饋電壓比較、誤差放大、脈寬調(diào)制、過流保護、欠壓保護等功能[4]。該芯片為功率管產(chǎn)生脈寬調(diào)制信號,通過檢測輸出的電壓和電流信號來控制開關(guān)管的通斷和調(diào)整輸出電壓。輸入和輸出電壓在一系列低功耗的電容作用下變得平滑。主要電路如圖4 所示。輸入端并聯(lián)的四個大容量電解電容(C1 ~C4 )起到電源濾波的作用,C5用來濾除電路工作時產(chǎn)生的高頻諧波成分。線圈L1是由幾個不同長度漆包線并聯(lián),以減少表面對高速轉(zhuǎn)換的影響。大功率開關(guān)元件K1采用IR 公司的IRL2505 ,該器件的源極/漏極電阻在工作時只有8 mΩ,故功耗非常低。肖特基二極管D1采用TO220 的封裝,最大工作電壓為45 V,正向?qū)▔航禐?。63 V 時的電流為16 A。低ESR 的電解電容C6 ~C9用于平滑輸出電壓,減小紋波電壓。電容C10用于高頻去耦。輸出電壓由R1 、R2 、R3和P1分壓,送入IC1的電壓反饋輸入端。IC 的時鐘頻率由RC 網(wǎng)絡(luò)R8和C13決定,工作頻率約為42kHz 。由R12 、C15和C16構(gòu)成的電源去耦電路以確保IC1工作的可靠性。
3 測 試
電源適配器在正常運行時各電量及效率見表1 。
其高效率(通常是95 %)不但能降低汽車電池的負(fù)荷,同時也降低了適配器內(nèi)部的功耗。PCB 尺寸比筆記本本身的電源適配器要小。
圖4 主電路原理圖
表1 測試結(jié)果及效率
4 結(jié)束語
本文提出了一種車載電源12 V DC/19 V DC 解決方案,利用汽車蓄電池為筆記本電腦提供持續(xù)電力。
該方案不僅能滿足普通用戶自駕游出行時的需求,也能使行業(yè)用戶如公路、工商、稅務(wù)稽查、公安與地質(zhì)等野外汽車流動作業(yè)隨時保證筆記本電腦的供電,充分發(fā)揮筆記本電腦的無線辦公特性。