SAY-SOD:基于大模型优化的高清遥感图像小目标检测框架
所屬分類:技术论文
上傳者:wwei
文檔大?。?span>5167 K
標(biāo)簽: 遥感图像 小目标检测 Segment Anything Model
所需積分:0分積分不夠怎么辦?
文檔介紹:随着遥感技术的不断发展,遥感图像中小目标检测面临着背景复杂、目标尺寸小、像素信息少等挑战,传统检测算法在这一领域的表现存在一定局限。提出了一种基于SAM大模型和改进YOLOv8的小目标检测框架。首先,利用SAM对原始遥感图像进行感兴趣区域的提取和分割,随后对分割后的图像进行多尺度增强,以提高小目标的显著性。增强后的图像与原图的编号和定位信息一起构建数据集,用于训练改进的YOLOv8模型。改进措施包括特征金字塔网络的优化、引入注意力机制、重新设计损失函数。实验结果表明,SAY-SOD框架在复杂背景下有效提升了遥感小目标的检测精度和鲁棒性,尤其在面对不同尺度和背景变化时表现出色。
現(xiàn)在下載
VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。